

RELATÓRIO DE MONITORAMENTO ACÚSTICO Aeroporto de Aracajú - SBAR

Contratante

Executor

RELATÓRIO DE MONITORAMENTO ACÚSTICO

Aeroporto de Aracajú - SBAR

3

Brasília - DF NOVEMBRO de 2022

SUMÁRIO

	1.	INTRODUÇÃO	5
	2.	AEROPORTO DE ARACAJÚ	6
	3.	METODOLOGIA	8
3	.1.	METODOLOGIA UTILIZADA NO MONITORAMENTO ACÚSTICO	8
	3.2.	METODOLOGIA UTILIZADA NAS SIMULAÇÕES	. 12
	4.	RESULTADOS	. 14
		RESULTADOS MONITORAMENTO ACÚSTICO	
	4.2.	RESULTADOS DAS SIMULAÇÕES	. 15
	4.3.	ESTIMATIVA DO PERCENTUAL DE PESSOAS COM ALTO INCÔMODO (AI)	. 17
	5.	CONSIDERAÇÕES FINAIS	. 18
	APÊI	NDICE 1 – PERCENTUAIS DE OPERAÇÃO DAS ROTAS DE SAÍDA (DEP) E CHEGADA (APP)	. 19
	APÊI	NDICE 2 – DESCRIÇÃO DAS PRINCIPAIS ROTAS DE DECOLAGENS	. 20
	APÊI	NDICE 3 - IDENTIFICAÇÃO DOS RECEPTORES POTENCIALMENTE CRÍTICOS (RPC)	. 21
	APÊI	NDICE 4 – RESULTADOS DETALHADO DO MONITORAMENTO ACÚSTICO	. 24
	APÊÎ	NDICE 5 – MEMÓRIA DE CÁLCULO – AEDT	. 39
	APÊÎ	NDICE 6 – EQUIPE TÉCNICA	. 44
	ANE	XO 1 – CARTA DO AERÓDROMO	. 45
	ANE	XO 2 – CERTIFICADO DE CALIBRAÇÃO DOS EQUIPAMENTOS	. 47
	ANE	XO 3 – ATESTADO DE RESPONSABILIDADE TÉCNICA (ART)	. 82

Lista de Figuras

Figura 1. Localização do SBAR	6
Figura 2 – Nível de pressão sonora durante um evento aeronáutico	9
Figura 3 – Níveis de pressão sonora ao longo do tempo (longo prazo)	10
Figura 4 – Níveis de pressão sonora ao longo do tempo, período específico	11
Figura 5. Curvas de níveis simuladas e os receptores críticos (RCP)	16
Figura 6. Registro fotográfico RPC 01	21
Figura 7. Registro fotográfico RPC 01	21
Figura 8. Registro fotográfico RPC 02	22
Figura 9. Registro fotográfico RPC 02	22
Figura 10. Registro fotográfico - RPC 03	22
Figura 11. Registro fotográfico - RPC 03	22
Figura 12. Registro fotográfico - RPC 04	23
Figura 13. Registro fotográfico - RPC 04	23
Figura 14 – Níveis de pressão sonora ao longo do tempo (8:30 às 17:00 horas) – RPC 01	24
Figura 15 – Espectro em bandas de 1/3 de oitavas - RPC 01	24
Figura 16 – Níveis de pressão sonora ao longo do tempo (03:00 às 24:00 horas) – RPC 02	25
Figura 17 – Níveis de pressão sonora ao longo do tempo (00:00 às 12:00 horas) – RPC 02	26
Figura 18 – Espectro em bandas de 1/3 de oitavas (03:00 às 24:00 horas) – RPC 02	26
Figura 19 – Espectro em bandas de 1/3 de oitavas (00:00 as 12:00 hs) – RPC 02	27
Figura 20 – Níveis de pressão sonora ao longo do tempo (07:00 às 22:00 horas) – RPC 02	27
Figura 21 – Níveis de pressão sonora (22:00 as 24:00 horas) – RPC 02	28
Figura 22 – Níveis de pressão sonora (24:00 as 06:00 horas) – RPC 02	28
Figura 23 – Níveis de pressão sonora medido ao longo do tempo (24 horas) – RPC 03	29
Figura 24 – Espectro em bandas de 1/3 de oitavas (matutino) – RPC 03	30
Figura 25 – Níveis de pressão sonora sem os sons intrusivos (13-22 horas) – RPC 03	30
Figura 26 – Níveis de pressão sonora sem os sons intrusivos (22-24 horas) – RPC 03	31
Figura 27 – Níveis de pressão sonora sem os sons intrusivos (07-12 horas) – RPC 03	31
Figura 28 – Níveis de pressão sonora sem os sons intrusivos (00-12 horas) – RPC 03	32
Figura 29 – Níveis de pressão sonora sem os sons intrusivos (00-07 horas) – RPC 03	32
Figura 30 – Níveis de pressão sonora sem os sons intrusivos (07-11 horas) – RPC 03	33
Figura 31 – Níveis de pressão sonora ao longo do tempo – RPC 04	34
Figura 32 – Níveis de pressão sonora ao longo do tempo – RPC 04	34
Figura 33 – Espectro em bandas de 1/3 de oitavas (24 horas) – RPC 04	35
Figura 34 – Espectro em bandas de 1/3 de oitavas (24 horas) – RPC 04	35
Figura 35 – Níveis de pressão sonora ao longo do tempo (13 as 22) – RPC 04	36
Figura 36 – Níveis de pressão sonora ao longo do tempo (22-24 horas) – RPC 04	36
Figura 37 – Níveis de pressão sonora ao longo do tempo (00-07 horas) – RPC 04	37
Figura 38 – Níveis de pressão sonora ao longo do tempo (07 -11 horas) – RPC 04	37

LISTA DE TABELAS

Tabela 1. Informações sobre o aeródromo	7
Tabela 2. Descrição dos equipamentos utilizados no monitoramento	8
Tabela 3. Número de movimentos – SBAR	12
Tabela 4. Estimativa percentual da operação diurna e noturna	12
Tabela 5. Composição da frota de aeronaves	13
Tabela 6. Identificação e coordenadas geográficas dos RPC	14
Tabela 7. Resumo dos resultados nos RPC	14
Tabela 8. Resultados das simulações	
Tabela 9. Comparação dos resultados medidos e simulados	15
Tabela 10. Estimativa do percentual de alto incômodo	17
Tabela 11. Resultados no RPC 01	25
Tabela 12. Parâmetros acústicos para o ponto RPC 01	25
Tabela 13. Resultados no RPC 02	29
Tabela 14. Resultados dos níveis de pressão sonora avaliados no RPC 02	29
Tabela 15. Resultados no RPC 03	33
Tabela 16. Resultados dos níveis de pressão sonora avaliados no RPC 03	33
Tabela 17. Resultados no RPC 04	37
Tabela 18. Resultados dos níveis de pressão sonora avaliados no RPC 04	38

1. INTRODUÇÃO

Este documento apresenta o relatório do monitoramento acústico realizado na vizinhança do Aeroporto de Aracajú (sigla ICAO: SBAR) no ano 2022, foi elaborado pela equipe de especialistas da empresa SONORA ENGENHARIA (Apêndice 6).

O monitoramento foi realizado de acordo com a ABNT NBR 16425-2 (2020), desde a escolha dos receptores potencialmente críticos (RPC), locais de colocação dos equipamentos de monitoramento, período e tempo de coleta de dados. Além do monitoramento acústico foram realizadas simulações computacionais dos pontos de monitoramento dos RPC. Os dois resultados, medidos e simulados, foram comparados e validados. Após a validação foram realizadas simulações com um conjunto maior de receptores potencialmente críticos.

Com os resultados obtidos foram estimados o percentual de pessoas com alto incômodo %AI, de acordo com a ABNT NBR 16425-2 (2020).

Para as simulações foi utilizado o *software* de modelagem AEDT 3.0d (*Aviation Environmental Design Tool*), desenvolvido pelo FAA (*Federal Aviation Administration* – EUA). Esse programa utiliza informações de rotas de voos, frota de aeronaves por aeroporto, características das aeronaves, modelos de terreno, entre outras. O AEDT 3.0d foi projetado para estimar os efeitos médios de longo prazo utilizando um *input* baseado em uma média anual.

Ressalta-se que para a simulação, o período diurno está compreendido entre 07h e 22h e o período noturno entre 22h e 07h do horário local. A metodologia utilizada baseou-se em métodos de cálculos preditivos e com base na média anual da movimentação de aeronaves, em cada uma das cabeceiras.

O presente relatório técnico está sendo entregue em formato eletrônico, contendo memória de cálculo, a metodologia adotada e as justificativas para os dados de entrada.

2. AEROPORTO DE ARACAJÚ

O Aeroporto Internacional de Aracaju é um aeroporto internacional situado na cidade de Aracajú, no estado de Sergipe, no Brasil. Ocupa uma área de mais de 3.874.745,28 m². Opera com voos domésticos para alguns pontos importantes do nordeste brasileiro e também São Paulo e Brasília. Fica situado a 12 km do centro de Aracaju e fica na região sul a 3,5 km das principais praias e hotéis. É operado pela AENA Brasil e sua carta ADC (*aerodrome chart*), com informações da pista, encontra-se no Anexo 2.

O número de passageiros movimentados em 2021 foi de 801.924 com 10.349 movimentos de pouso e decolagem. O pátio de aeronaves é composto por 13 posições com infraestrutura física com vias de acesso, estacionamentos, área de apoio, hangares, pátio de manobras, pista de taxiamento, pista de pouso e decolagem e terminal de passageiros com estabelecimentos comerciais e área administrativa, técnica e de passageiros. A Tabela 1 apresenta as informações do SBAR e a Figura 1 sua localização.

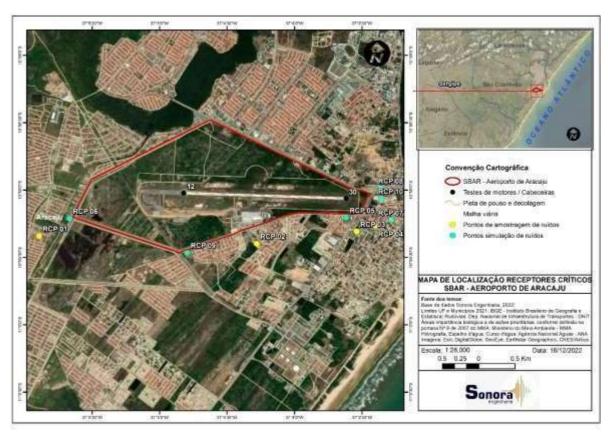


Figura 1. Localização do SBAR

Tabela 1. Informações sobre o aeródromo

Identificação	Aeroporto de Aracajú			
Operador Aeroportuário	AENA Brasil			
Designador ICAO	SBAR			
Município/estado	Aracajú / Sergipe			
Coordenadas – WGS 84	Lat.: 10° 59' 07" W Long.: 37° 04' 49" S			
Velocidade média do vento	14 km/h			
Temperatura de referência	31,0 °C			
Elevação do aeródromo	7 m			
Pressão atmosférica	1012 mBar			

3. METODOLOGIA

3.1. Metodologia Utilizada no Monitoramento Acústico

O monitoramento foi realizado seguindo as recomendações da ABNT NBR 16425-2 (2020). A **detecção, a classificação e validação** dos eventos sonoros foram realizadas por meio da análise dos gráficos dos níveis de pressão sonora ao longo do tempo, espectro de frequências, do áudio gravado, além do *software* de detecção automática de sobrevoo de aeronaves.

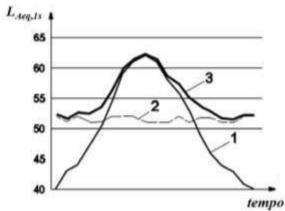
As estações que compõem o sistema de monitoramento sonoro, estão apresentados na Tabela 2 e atendem aos requisitos da ABNT NBR 16425-2 (2020). As condições gerais de medição e calibração dos equipamentos atendem a ABNT NBR 16425-1. O *software* utilizado para análise dos dados foi o dBTraid, da 01 dB.

Equipamento	Modelo	Número de Série	Fabricante	Certificado de calibração (RBC)	Prazo de validade da calibração
Sonômetro	Solo	65236	01dB	131.969	03/02/2024
Sonômetro	Fusion	13292	01dB	11893-554	25/07/2024
Sonômetro	Fusion	11532	01dB	138.684	23/09/2024
Sonômetro	Solo	20138	01dB	131.968	03/02/2024
Calibrador acústico	Cal21	34113633	01dB	131.852	30/01/2024

Tabela 2. Descrição dos equipamentos utilizados no monitoramento

Os equipamentos de medição, sonômetros das estações de monitoramento, foram ajustados utilizando o calibrador acoplado ao microfone antes e ao final das medições. Para o conjunto de avaliações realizadas foi verificado que o valor dos níveis de pressão não apresentou diferença significativa, entre os valores aferidos.

De acordo com a ABNT NBR 16425-2 (2020), para as medições efetuadas em um receptor potencialmente crítico (RPC), o ponto de medição deve estar localizado próximo a áreas normalmente ocupadas (por exemplo: terraço, quintal, fachada etc.), onde o impacto do ruído aeronáutico possivelmente interfere nas atividades associadas à sua utilização (áreas sensíveis ao ruído). Segundo essa norma, tem-se que:


- ruído de sobrevoo: é o ruído produzido pela passagem de uma aeronave, sob a condição de voo, que se inicia quando o som da aeronave puder ser distinguido do som residual e termina quando o som da aeronave deixar de ser distinguível do som residual. O ruído de sobrevoo não está associado ao ruído produzido pelas operações de decolagem, pouso ou toque e arremetida.
- ruído de pouso: é o ruído produzido pela operação de pouso, que se inicia quando o som da aeronave, em fase de aproximação para pouso, torna-se distinguível do som residual,

e termina com a saída da aeronave da pista de pouso e decolagem ou, após o seu toque em solo, quando o som da aeronave deixar de ser distinguível do som residual.

- ruído de pouso: é o ruído produzido pela operação de decolagem, que se inicia quando o som da aeronave puder ser distinguido do som residual, e termina quando o som da aeronave deixar de ser distinguível do som residual.
- ruído de taxi: é o ruído produzido pela operação de uma aeronave em movimento sobre a superfície de um aeródromo, excluída as operações de decolagem, pouso ou toque e arremetida. Para a medição dos níveis de pressão sonora provenientes das operações de taxi, aplica-se a ABNT NBR 10151.
- ruído de teste de motor: é o ruído produzido pela operação uma aeronave, parada em solo, para fina de teste de motor, que se inicia quando o som da aeronave puder ser distinguido do som residual, e termina quando o som da aeronave deixar de ser distinguível do som residual. Para a medição dos níveis de pressão sonora provenientes de testes de motores, aplicam-se as provisões da ABNT NBR 10151, em função da natureza estática da fonte.

De acordo com a ABNT NBR 16425-2 (2020), o som residual durante um evento aeronáutico produz um aumento no nível de pressão sonora. Deste modo, a faixa do som residual e sua variação devem ser consideradas. A Figura2 ilustra uma situação típica de nível de pressão sonora durante um evento aeronáutico.

Figura 2 – Nível de pressão sonora durante um evento aeronáutico Fonte: ABNT NBR 16425-2 (2020), pag. 36

Legenda:

- 1 nível de pressão sonora da aeronave (som específico)
- 2 nível de pressão sonora do som residual, Lresidual
- 3 nível de pressão sonora medido (som total), L_{medido}

Os algoritmos de identificação automática são eficazes apenas com som residual baixo nos quais os ruídos referentes aos eventos aeronáuticos estão 20 dB acima do som residual. Dessa forma, em áreas densamente urbanizadas, tais algoritmos revelam-se muitas vezes ineficazes.

Sendo assim, uma metodologia complementar baseada na análise dos perfis dos eventos aeronáuticos, em conjunto com a escuta dos sons gravados pelos equipamentos foi utilizada. Para os eventos aeronáuticos foram identificados o início, fim e duração média.

Quando o nível pressão sonora do som residual for menor do que o nível de pressão sonora medido, uma correção de níveis pode ser determinada a partir da equação seguinte.

$$\Delta L = -10 \cdot \log_{10}(1 - 10^{-0.1(L_{medido} - L_{residual})}) dB$$
 (1)

Nesta avaliação, além do sobrevoo de aeronaves observadas em todos os pontos analisados, foram identificados ruído de pouso e decolagem e ruído taxi, estes detectados, classificado e validados, com o auxílio do áudio gravado.

A seguir, é apresentado um exemplo da detecção, classificação e validação de um evento sonoro de sobrevoo de aeronave. A partir do gráfico, dos níveis de pressão sonora ao longo do tempo (Figura 3), seleciona-se um período específico sobre o qual serão realizadas as análises, conforme mostra a Figura 4.

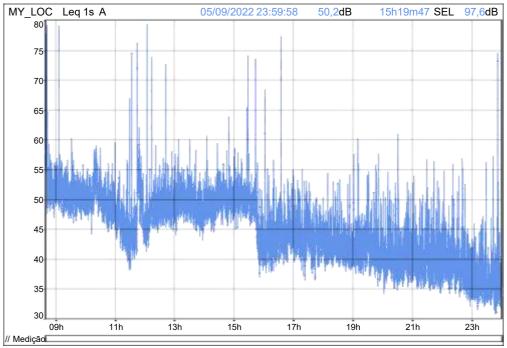


Figura 3 – Níveis de pressão sonora ao longo do tempo (longo prazo)

Figura 4 – Níveis de pressão sonora ao longo do tempo, período específico

Para a avaliação do som específico foram considerados os eventos aeronáuticos detectados, classificado e validados. Na avaliação do som residual, os sons principais são retirados e o restante é considerado como sendo som residual.

A medição do nível de pressão sonora do som residual foi realizada segundo o item 10.3.3 da ABNT NBR 16425-2 (2020) e o processo de classificação dos eventos sonoros de acordo com o item 10.4.

O parâmetro L_{dn} é definido a partir do L_{dia} e L_{noite}

$$L_{dn} = 10 \times \log \left[\frac{1}{24} (15 \times 10^{\frac{L_{dia}}{10}} + 9 \times 10^{\frac{L_{noite} + 10}{10}}) \right]$$
 (2)

 L_{dia} corresponde ao nível de pressão sonora equivalente no período diurno, ente 7 e 22 horas. L_{noite} corresponde ao nível de pressão sonora equivalente no período diurno, ente 22 e 7 horas.

Utilizando as relações de exposição-resposta para o incômodo sonoro, apresentadas no anexo F da ABNT NBR 16425-2 (2020), foi estimado o percentual de pessoas com alto incômodo devido aos eventos aeronáuticos. A relação de exposição-resposta é válida para a faixa de níveis sonoros dia-noite, L_{dn} , compreendida entre 45 dB e 75 dB. A equação (3) expressa a expansão polinomial.

$$\%AI = -1.395 \times 10^{-4} (L_{dn} - 42)^3 + 4.081 \times 10^{-2} (L_{dn} - 42)^2 + 0.342 (L_{dn} - 42)$$
 (3)

3.2. Metodologia Utilizada nas Simulações

As curvas de ruído e simulações foram geradas no *software* AEDT (Aviation Environmental Design Tool) versão 3.0d.

Os dados operacionais foram fornecidos pela empresa AENA Brasil, operadora do SBAR (históricos de operações do ano 2022 — janeiro a julho). A Tabela 3 mostra o percentual de operações de pouso e decolagens nas duas cabeceiras da pista do SBAR. Já a Tabela 4 expressa o percentual de operação diurna e noturna. Com base nessa tabela, as simulações foram realizadas utilizando o percentual de operações diurno de 90% e o noturno de 10%. Adotouse 50% para pousos e decolagens nas simulações realizadas.

Na simulação foi considerada a movimentações de pouso, decolagem e taxiamento de aeronaves em operação no SBAR nas duas cabeceiras (12/30) para os meses de janeiro a julho de 2022.

Tabela 3. Número de movimentos-SBAR

	13 - 1	940 X 45m - 31		
PISTA	Latitude	Longitude	Pouso	Decolagem
Cabeceira 13	10°59'01"S	37°04'49"W	98,38%	98,25%
Cabeceira 31	10°59'04"S	37°03'37"W	1,62%	1,75%

Fonte: Operações janeiro/julho 2022 SBAR

Tabela 4. Estimativa percentual da operação diurna e noturna

Operações Noturnas %	(22h as 07h)
Janeiro	15,16
Fevereiro	13,36
Março	8,06
Abril	8,98
Maio	8,18
Junho	8,68
Julho	9,06
Média	10%
Operações Diurnas % (07h as 21h)
Janeiro	84,84
Fevereiro	86,64
Março	91,94
Abril	91,02
Maio	91,82
Junho	91,32
Julho	90,94
Média	90%

Fonte: Histórico de pousos e decolagens do SBAR – ano 2022 (janeiro/julho)

O Apêndice 1 resume as principais rotas de saída, por cabeceira, utilizadas para a simulação. Também apresenta os percentuais de operação de cada rota (chegada e saída) bem como a distribuição da operação para cada aeronave. As cartas SID e IAC adotadas são para a pista existente (mostrada na Carta do Aeródromo – Anexo 2) e foram obtidas no sítio (AISWEB) do Serviço de Informação Aeronáutica.

O Apêndice 2 apresenta as rotas de saídas com suas respectivas descrições, ou seja, os valores das distâncias, dos ângulos e raio das curvas que foram estimados a partir das cartas de navegação áreas obtidas. Para as rotas de chegadas das cabeceiras simuladas foram consideradas linhas retas de comprimento 10 km. A Tabela 5 mostra a composição da frota e o percentual de operação de cada aeronave utilizada na simulação. Foram utilizadas as aeronaves com percentuais mais expressivos de operação.

Tabela 5. Composição da frota de aeronaves

Equipamento	Percentual de operação
A20N	14,1%
AT72	36,0%
B738	19,3%
B737	1,1%
C550	3,7%
E195	10,0%
PA34	4,1%
A21N	11,6%

Fonte: Histórico de pousos e decolagens do SBAR – ano 2022

4. RESULTADOS

4.1. Resultados Monitoramento Acústico

O monitoramento ocorreu no período de 25 a 29 de novembro, em quatro receptores potencialmente críticos (RPC). A Tabela 6 apresenta os locais, identificação e as coordenadas geográficas. Nos RPC 02, RPC 03 e RPC 04, o monitoramento ocorreu num período de 24 horas. Na EMEF Papa João Paulo II (RPC 01), o monitoramento ocorreu no turno matutino e vespertino.

ID Local Latitude Longitude EMEF Papa João Paulo II — Escola. Av. A3, s/n - Santa Maria. -37.098196° RPC 01 -10.989030° Aracaju – SE. 49043-516 (79) 3179-2706 Porto Caelli - Complexo de condomínio. R. José Barreto Fontes, RPC 02 -10.989962° -37.071336° 200 – Aeroporto. Aracaju - SE Condomínio Estrela do Mar- Rua François Hoald - Atalaia, **RPC 03** -10.988462° -37.058972° Aracaju - SE Condomínio Santa Cecília - Complexo residencial. R. Napoleão **RPC 04** -10.987737° -37.056656° Dórea, 723 – Atalaia. Aracaju – SE. 49037-460

Tabela 6. Identificação e coordenadas geográficas dos RPC

A Tabela 7 apresenta o resumos dos resultados do monitoramento acústico. O som medido refere-se ao som total avaliado. O som residual é o resultado do som medido subtraindo os sons intrusivos e o som específico, já o som específico é devido ao ruído aeronáutico. No Apêndice 3 é apresentado o detalhamento referentes aos locais do monitoramento, no Apêndice 4 é apresentado o detalhamento dos resultados do monitoramento acústico.

RPC Som medido Som residual Som específico Parâmetro (dB) (dB) (dB) RPC 01 40,7 56,3 56,2 L_d 52,9 52,4 43,3 L_d RPC 02 50,4 49,9 41,2 L_n L_{dn} 57,3 56,7 48,0 L_d 51,6 46,3 50,1 44,5 **RPC 03** L_n 51,6 50,7 51,2 57,0 L_{dn} 58,0 54,9 54,7 L_d 49,9 **RPC 04** L_n 49,1 54,2 53,9 55,6 60,7 60,5 L_{dn}

Tabela 7. Resumo dos resultados nos RPC

Os resultados indicam que o som específico avaliado nos receptores potencialmente críticos 1 e 2, tem baixo potencial de incômodo, pois é menor que o som residual e abaixo de 50 dB. Já em relação aos receptores 03 e 04 o som residual é menor ou próximo ao ruído gerado pelo ruído aeronáutico, indicando um maior potencial de incômodo.

4.2. Resultados das Simulações

Com o objetivo de ampliar a avaliação dos receptores potencialmente críticos (RCP) foram realizadas as simulações considerando dez receptores, sendo que os quatro primeiros correspondem aos locais onde ocorreram o monitoramento acústico *in loco*. A Tabela 8 apresenta os resultados das simulações com uso do *software* AEDT 3.0d.

Tabela 8. Resultados das simulações

ID	Local	Latitude	Longitude	$L_{dn}(dB)$
RC 01	EMEF Papa João Paulo II – Escola. Av. A3, s/n - Santa Maria. Aracaju – SE. 49043-516 (79) 3179-2706	-10.989030°	-37.098196°	40,9
RC 02	Porto Caelli - Complexo de condomínio. R. José Barreto Fontes, 200 – Aeroporto. Aracaju - SE	-10.989962°	-37.071336°	47,5
RC 03	Condomínio Estrela do Mar- Rua François Hoald - Atalaia, Aracaju - SE	-10.988462°	-37.058972°	57,2
RC 04	Condomínio Santa Cecília - Complexo residencial. R. Napoleão Dórea, 723 – Atalaia. Aracaju – SE. 49037-460	-10.987737°	-37.056656°	57,5
RC 05	Colégio Estadual Santos Dumont, Rua Sen, Av. Sen. Júlio César Leite, S/N - Atalaia, Aracaju - SE, 49037-580	-10.986743°	-37.060279°	64,2
RC 06	Missão Cantinho do Céu – Escola. Av. Alexandre Alcino, 18 - Santa Maria. Aracaju – SE. 49038-060	-10.986841°	-37.094462°	45,3
RC 07	COLEGIO NICOLAS -Centro Educacional. R. Eduardo Abreu, 113 – Atalaia. Aracaju – SE. 49037-640	-10.987028°	-37.054666°	57,7
RC 08	Hotel Aracaju Express. Av. José Carlos Silva, 290 – Atalaia. Aracaju – SE. 49037-387	-10.983082°	-37.056003°	60,2
RC 09	Colégio Estadual Alceu Amoroso Lima, R. Alceu Amoroso Lima, S/N – Atalaia. Aracaju – SE. 49037-020.	-10.991079°	-37.079932°	49,1
RC 10	Condomínio Imperial -Complexo residencial Av. Monteiro Lobato, 464 - loja 06 - Atalaia Aracaju – SE. 49037-45	-10.984398°	-37.055939°	60,6

Para avaliar a acurácia das simulações foram realizadas as comparações entre os resultados do L_{dn} medidos e simulados. A Tabela 9 apresenta a comparação entre os resultados sendo possível verificar um desvio máximo de 2,8 dB (5,1%). A média dos desvios foi de 0,9 dB (0,02%) o que demostra a acurácia dos modelos utilizados na simulação. Assim, os valores simulados representam de maneira fidedigna os níveis de pressão sonora referente ao ruído aeronáutico.

Tabela 9. Comparação dos resultados medidos e simulados

RPC	L_{dn} (medido)	L_{dn} (simulado)	Desvio	%
RPC 01	40,7	40,9	0,2	0,5%
RPC 02	48,0	47,5	0,5	1,0%
RPC 03	57,0	57,2	0,2	0,4%
RPC 04	54,7	57,5	2,8	5,1%

A Figura 5 apresenta as curvas de ruído simuladas para o parâmetro L_{dn} , situação de operação atual, e os receptores potencialmente críticos (RCP).

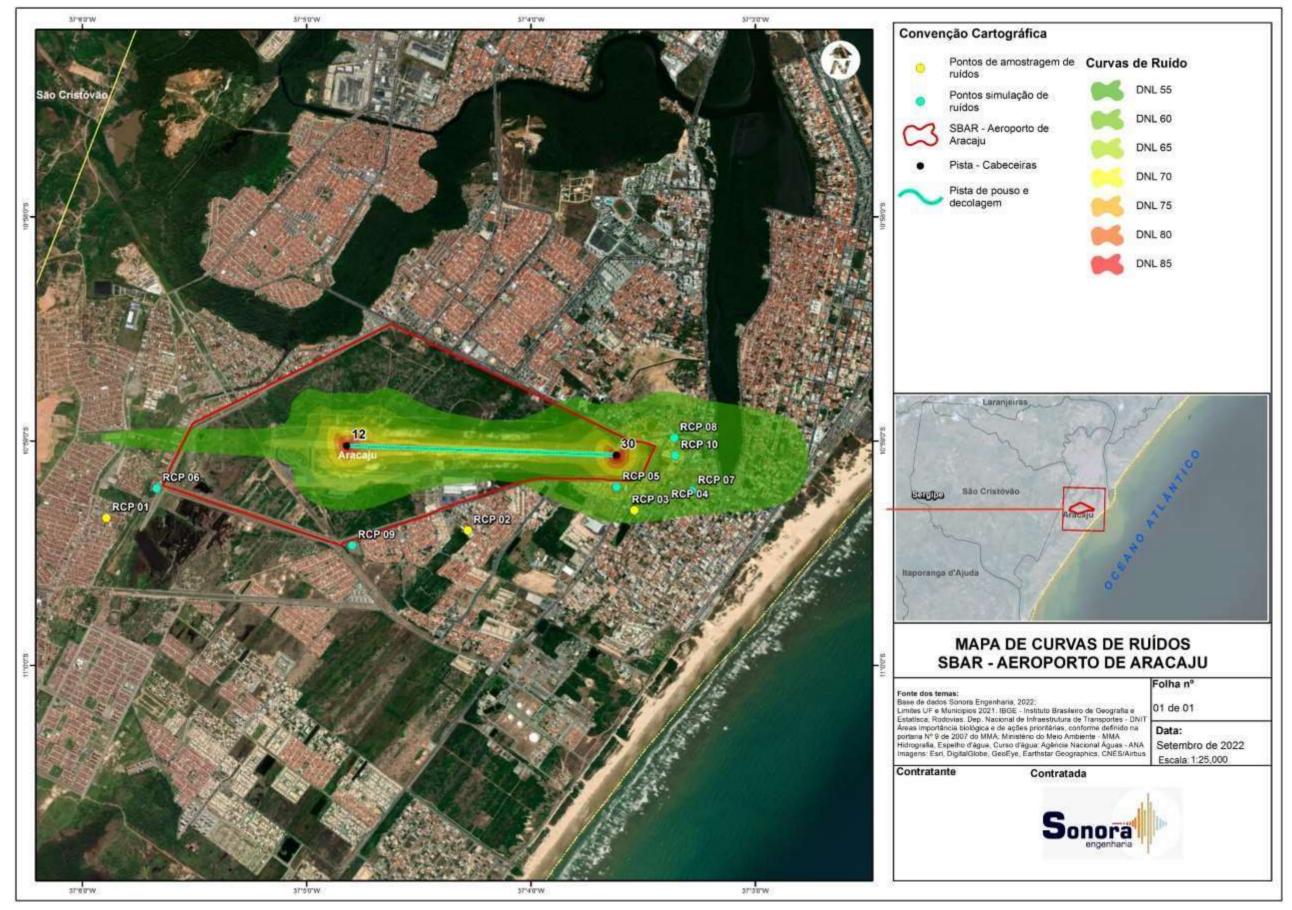


Figura 5. Curvas de níveis simuladas e os receptores críticos (RCP)

4.3. Estimativa do percentual de pessoas com Alto Incômodo (AI)

Utilizando a equação (3), e os resultados das simulações para os 10 receptores potencialmente críticos, foi calculado o percentual de pessoas com alto incômodo (AI) devido ao ruído aeroviário para cada um dos RPC. Os resultados estão apresentados na Tabela 10.

Tabela 10. Estimativa do percentual de alto incômodo

Receptor	L_{dn}	%AI
RPC 01	40,9	5,5
RPC 02	47,5	15,8
RPC 03	57,2	33,5
RPC 04	57,5	34,1
RPC 05	64,2	48,1
RPC 06	45,3	12,2
RPC 07	57,7	34,5
RPC 08	60,2	39,5
RPC 09	49,1	18,5
RPC 10	60,6	40,4

De acordo com a ABNT NBR 16425-2 (2020), o percentual de pessoas localizadas nos RPC, com alto incômodo devido ao ruído gerado pelas operações do aeroporto variaram entre 5,5 e 48,1%. Destaca-se como ponto de atenção os RPC 05, 08 e 10, o Colégio Estadual Santos Dumont, Colégio Nicolas e o Colégio Estadual Alceu Amoroso Lima.

5. CONSIDERAÇÕES FINAIS

O relatório apresenta os resultados do monitoramento acústico realizado em receptores potencialmente críticos (RPC) no período de 25 a 20 de novembro na vizinhança do Aeroporto de Aracajú. A escolha dos RPC, assim como o monitoramento acústico foi realizado seguindo as recomendações da ABNT NBR 16425-2 (2020).

Os resultados indicaram que o som específico (ruído devido as operações aeronáuticas) avaliado nos RPC 01 e RPC 02, tem baixo potencial de incômodo, pois é menor que o som residual e abaixo de 50 dB. Já em relação aos receptores RPC 03 e RPC 04 o som residual é menor ou próximo ao ruído gerado pelo ruído aeronáutico, indicando um maior potencial de incômodo. Vale a ressalva que não existe registo de reclamações junto ao operador do aeroporto do ruído aeronáutico na área destes receptores.

Com o objetivo de ampliar a avaliação dos receptores potencialmente críticos (RCP) foram realizadas simulações considerando dez receptores, sendo que os quatro primeiros correspondem aos locais onde ocorreram o monitoramento acústico *in loco*.

Os valores dos desvios da comparação entre os resultados medidos e simulados sendo possível verificar um desvio máximo de 2,8 dB (5,1%). A média dos desvios foi de 0,9 dB (0,02%) o que demostra a acurácia dos modelos utilizados na simulação. Assim, os valores simulados representam de maneira fidedigna os níveis de pressão sonora referente ao ruído aeronáutico.

Considerando os valores simulados, foi calculado para cada RPC o percentual de pessoas com alto incômodo (AI) devido ao ruído aeronáutico, conforme a ABNT NBR 16425-2 (2020). Os resultados variaram entre 5,5 e 48,1%. Destaca-se como ponto de atenção os RPC 05, 08 e 10, o Colégio Estadual Santos Dumont, Colégio Nicolas e o Colégio Estadual Alceu Amoroso Lima.

Apêndice 1 – Percentuais de Operação das Rotas de Saída (DEP) e Chegada (APP)

CHEGADA

	Operações ano (50% decolagens)			A20N	AT72	B738	B737	C550	E195	PA34	A21N	
	Operações ano (50% decolagens)/dia		2.34	5.96	3.20	0.18	0.61	1.66	0.69	1.92		
CABECEIRA	ROTA	CHEGADA	% UTILIZAÇÃO	APP	A20N	AT72	B738	B737	C550	E195	PA34	A21N
12	APP1		99,19%	APP1D	2.10	5.36	2.86	0.16	0.61	1.50	0.69	1.72
				APP1N	0.24	0.60	0.31	0.02	0.00	0.16	0.00	0.19
30	APP2		0,81%	APP2D	0.00	0.000	0.02	0.00	0.0000	0.00	0.00	0.01
				APP2N	0.000	0.00	0.0000	0.00	0.0000	0.00	0.00	0.000

SAÍDAS

כאוטאט												
CABECEIRA	ROTA	SAÍDA	% UTILIZAÇÃO	DEP	A20N	AT72	B738	B737	C550	E195	PA34	A21N
	DED1	ONANII / CATIII 1A Dinoita	49,13%	DEP1 D	1.04	2.64	1.41	0.08	0.31	0.75	0.35	0.96
12	DEP1	OMNI / GATUL 1A - Direita		DEP1 N	0.12	0.30	0.19	0.01	0.00	0.08	0.00	0.00
12	O. A.W. / GU	ONANII / SINAAD / VIII GDA Formando	49,13%	DEP2 D	1.04	2.64	1.41	0.08	0.31	0.75	0.35	0.96
DEF	DEP2	OMNI / SIMAD / VUGRA - Esquerda		DEP2 N	0.12	0.30	0.19	0.01	0.00	80.0	0.00	0.00
CABECEIRA	ROTA	SAÍDA	% UTILIZAÇÃO	DEP	A20N	AT72	B738	B737	C550	E195	PA34	A21N
	DEP3 OMNI- Direita 0,88%	DEP3 D	0.02	0.05	0.00	0.00	0.00	0.00	0.00	0.00		
30		DEP3	Olvini- Direita 0,88%	0,88%	DEP3 N	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	DED4	DEP4 OMNI - Esquerda	0,88%	DEP4 D	0.02	0.05	0.00	0.00	0.00	0.00	0.00	0.00
	DEP4			DEP4 N	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Apêndice 2 – Descrição das Principais Rotas de Decolagens

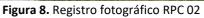
	SAÍDA		% UTILIZAÇÃO	Linha Reta (nmi)	Curva	Grau(°)	Raio (nmi)
CABECEIRA 12	DEP1	OMNI / GATUL 1A - Direita	49.125	5.00	direita	100.00	2.00
	DEP2	OMNI / SIMAD / VUGRA - Esquerda	49.125	5.00	esquerda	100.00	2.00
CARECEIRA 30		SAÍDA	% UTILIZAÇÃO	Linha Reta (nm)	Curva	Grau(°)	Raio (km)
CABECEIRA 30	DEP3	OMNI / DENDO - Direita	0.875	5.00	esquerda	100.00	2.00
	DEP4	OMNI / PULUR - Esquerda	0.875	5.00	esquerda	100.00	2.00

Apêndice 3 - Identificação dos Receptores Potencialmente Críticos (RPC)

RPC 01 - EMEF Papa João Paulo II

O monitoramento acústico ocorreu no dia 26 de novembro, nos turnos matutino e vespertino. A estação de monitoramento foi posicionada no jardim em frente à escola, seguindo as recomendações da ABNT NBR 16425-2 (2020). As Figuras 6 e 7 apresentam o registro fotográfico da avalição acústica.

Figura 6. Registro fotográfico RPC 01


Figura 7. Registro fotográfico RPC 01

RPC 02 - Condomínio Porto Caelli

Neste RPC o monitoramento ocorreu nos dias 25 e 26 de novembro num período contínuo de 24 horas. As Figuras 8 e 9 apresentam o registro fotográfico da avalição acústica.

Figura 9. Registro fotográfico RPC 02

RPC 03 – Condomínio Estrela do Mar

Neste RPC o monitoramento acústico ocorreu nos dias 28 e 29 de outubro no período de 24 horas. As Figuras 10 e 11, apresentam o registro fotográfico da avalição acústica.

Figura 10. Registro fotográfico - RPC 03

Figura 11. Registro fotográfico - RPC 03

RPC 04 - Condomínio Santa Cecília

Neste RPC o monitoramento acústico ocorreu nos dias 28 e 29 de novembro no período de 24 horas. As Figuras 12 e 13, apresentam o registro fotográfico da avalição acústica.

Figura 12. Registro fotográfico - RPC 04

Figura 13. Registro fotográfico - RPC 04

Apêndice 4 – Resultados Detalhado do Monitoramento Acústico

RPC 01 - EMEF Papa João Paulo II

A Figura 14 apresenta o resultado dos níveis de pressão sonora ao longo tempo, e a Figura 15 o espectro em bandas de 1/3 de oitavas, avaliados no RPC 01.

Figura 14 – Níveis de pressão sonora ao longo do tempo (8:30 às 17:00 horas) – RPC 01

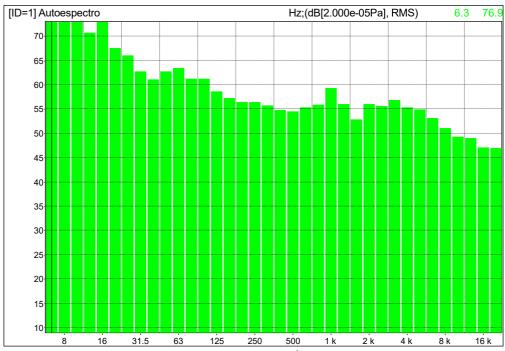


Figura 15 – Espectro em bandas de 1/3 de oitavas - RPC 01

Na Tabela 11 é apresentado o resumo dos dados referentes ao RPC 01.

Tabela 11. Resultados no RPC 01

Classificação	L_{Aeq} (dB)
Som total	56,3
Som Residual	56,2
Som Específico	40,7

A partir dos resultados da Tabela 11 foram calculados os parâmetros correspondentes ao L_{dia} O resultado está apresentado na Tabela 12.

Tabela 12. Parâmetros acústicos para o ponto RPC 01

Parâmetro	Som residual (dB)	Som específico (dB)	
L_d	56,3	40,7	

RPC 02 - Condomínio Porto Caelli

As Figuras 16 e 17 apresentam os resultados dos níveis de pressão sonora ao longo tempo, e as Figuras 18 e 19 o espectro em bandas de 1/3 de oitavas aferidas no RPC 02.

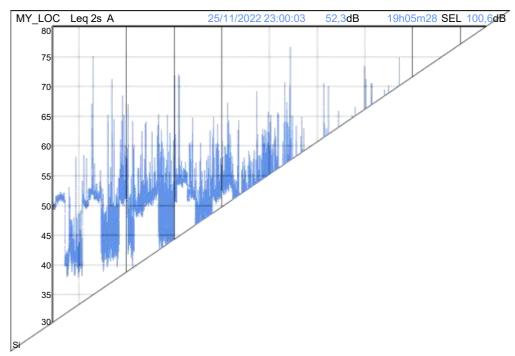
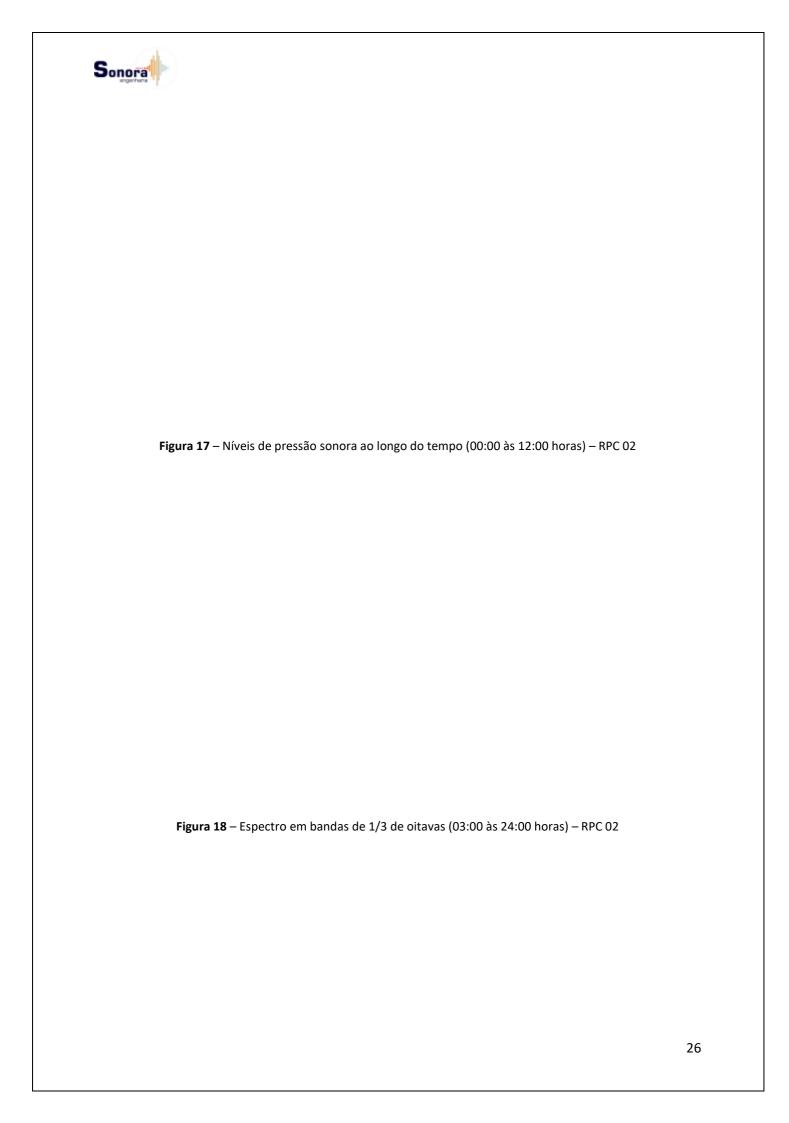



Figura 16 – Níveis de pressão sonora ao longo do tempo (03:00 às 24:00 horas) – RPC 02

Figura 19 – Espectro em bandas de 1/3 de oitavas (00:00 as 12:00 hs) – RPC 02

Foram retirados os sons intrusivos para a análise dos resultados. As Figuras 20, 21 e 22 apresentam os resultados dos níveis de pressão ao longo do período.

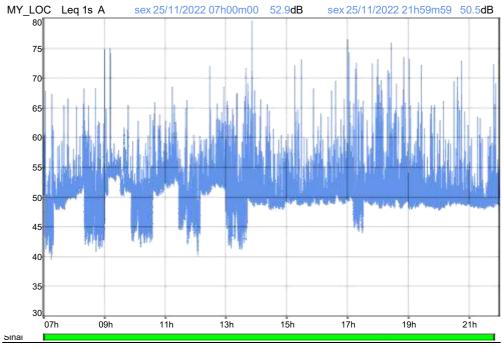


Figura 20 – Níveis de pressão sonora ao longo do tempo (07:00 às 22:00 horas) – RPC 02

Figura 21 – Níveis de pressão sonora (22:00 as 24:00 horas) – RPC 02

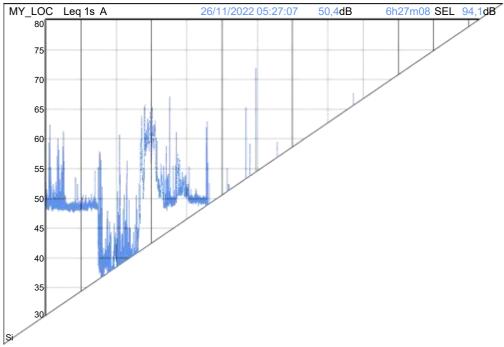


Figura 22 – Níveis de pressão sonora (24:00 as 06:00 horas) – RPC 02

Na Tabela 13 é apresentado o resumo dos dados aferidos para o RPC 02. A partir destes resultados foram calculados os parâmetros correspondentes ao L_{dia} , L_{noite} e L_{dn} , referente ao som residual e específico. Os resultados estão apresentados na Tabela 14.

Tabela 13. Resultados no RPC 02

Classificação	Período	L_{Aeq} (dB)
	07:00 às 22:00	52,9
Som total	22:00 às 24:00	50,5
	00:00 às 06:00	50,4
	07:00 às 22:00	52,4
Som residual	22:00 às 24:00	50,1
	00:00 às 07:00	49,8
(5)	07:00 às 22:00	43,3
Som específico	22:00 às 24:00	39,9
	00:00 às 06:00	41,5

Tabela 14. Resultados dos níveis de pressão sonora avaliados no RPC 02

Parâmetro	Som medido (dB)	Som residual (dB)	Som específico (dB)
L_d	52,9	52,4	43,3
L_n	50,4	49,9	41,2
L_{dn}	57,3	56,7	48,0

RPC 03 – Condomínio Estrela do Mar

A Figura 23 apresenta os resultados dos níveis de pressão sonora ao longo tempo (13:00 as 24:00), e a Figura 24 o espectro em bandas de 1/3 de oitavas no RPC 03.

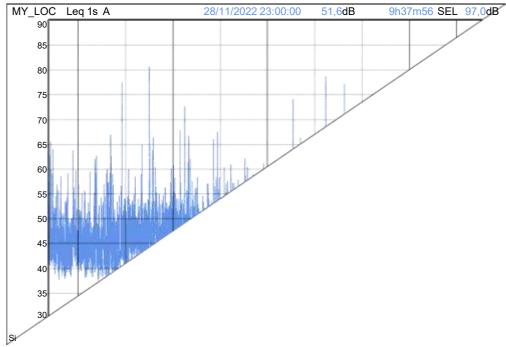
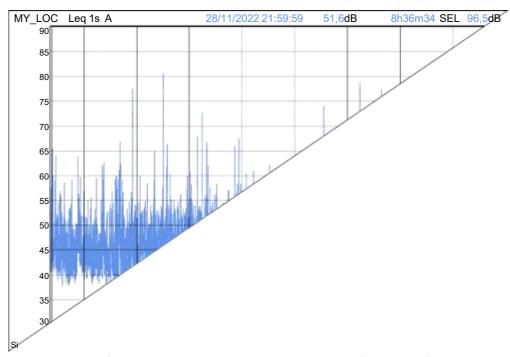



Figura 23 – Níveis de pressão sonora medido ao longo do tempo (24 horas) – RPC 03

Figura 24 – Espectro em bandas de 1/3 de oitavas (matutino) – RPC 03

As Figuras de 25 a 30 apresentam os resultados dos níveis de pressão sonora ao longo separados por períodos.

Figura 25 – Níveis de pressão sonora sem os sons intrusivos (13-22 horas) – RPC 03

Figura 26 – Níveis de pressão sonora sem os sons intrusivos (22-24 horas) – RPC 03

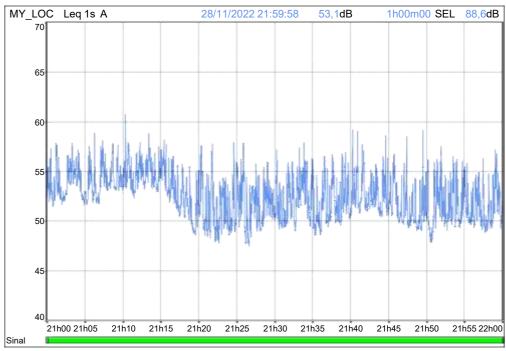


Figura 27 – Níveis de pressão sonora sem os sons intrusivos (07-12 horas) – RPC 03

Figura 28 – Níveis de pressão sonora sem os sons intrusivos (00-12 horas) – RPC 03

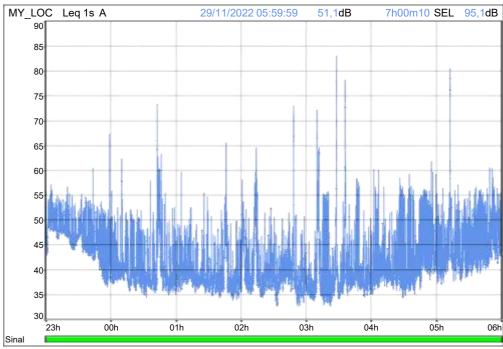


Figura 29 – Níveis de pressão sonora sem os sons intrusivos (00-07 horas) – RPC 03

Figura 30 – Níveis de pressão sonora sem os sons intrusivos (07-11 horas) – RPC 03

Na Tabela 15 é apresentado o resumo dos dados aferidos para o RPC 03, a partir desses resultados foram calculados os parâmetros correspondentes ao L_{dia} e L_{dn} , referente ao som residual e específico. Os resultados estão apresentados na Tabela 16.

Tabela 15. Resultados no RPC 03

Classificação	Período	L_{Aeq} (dB)
	13:00 às 22:00	51,6
Som total	22:00 às 24:00	53,1
30III total	00:00 às 07:00	51,1
	07:00 às 12:00	51,7
	13:00 às 22:00	46,3
Som residual	22:00 às 24:00	45,2
Join residual	00:00 às 07:00	44,3
	07:00 às 12:00	46,2
	13:00 às 22:00	50,1
Som específico	22:00 às 24:00	52,3
Som especifico	00:00 às 07:00	50,1
	07:00 às 12:00	50,3

Tabela 16. Resultados dos níveis de pressão sonora avaliados no RPC 03

Parâmetro	Som medido (dB)	Som residual (dB)	Som específico (dB)
L_d	51,6	46,3	50,1
L_n	51,6	44,5	50,7
L_{dn}	58,0	51,2	57,0

RPC 04 - Condomínio Santa Cecília

As Figuras 31 e 32 apresentas os resultados dos níveis de pressão sonora ao longo de todo o tempo de avaliação. As Figura 33 e 34 o espectro em bandas de 1/3 de oitavas para o RPC 04.

FUSION Leq 1s A 29/11/2022 10:52:22 49,6dB 10h52m23 SEL 95,5dB

90
85
80
75
70
65
60
45
40
35
30
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 10h

Figura 31 – Níveis de pressão sonora ao longo do tempo – RPC 04

Figura 32 – Níveis de pressão sonora ao longo do tempo – RPC 04

Figura 33 – Espectro em bandas de 1/3 de oitavas (24 horas) – RPC 04

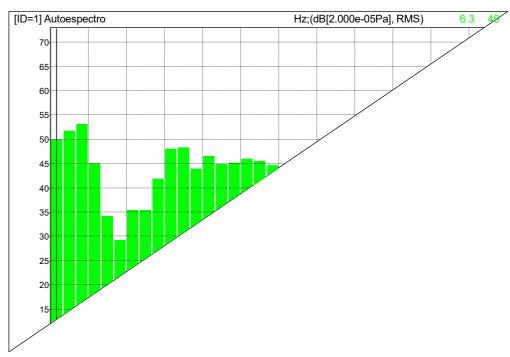


Figura 34 – Espectro em bandas de 1/3 de oitavas (24 horas) – RPC 04

As Figuras de 35 a 38 apresentas os resultados dos níveis de pressão sonora ao longo dos períodos fracionados.

Figura 35 – Níveis de pressão sonora ao longo do tempo (13 as 22) – RPC 04

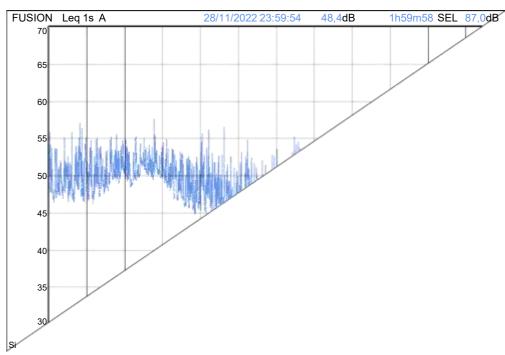


Figura 36 – Níveis de pressão sonora ao longo do tempo (22-24 horas) – RPC 04

Figura 37 – Níveis de pressão sonora ao longo do tempo (00-07 horas) – RPC 04

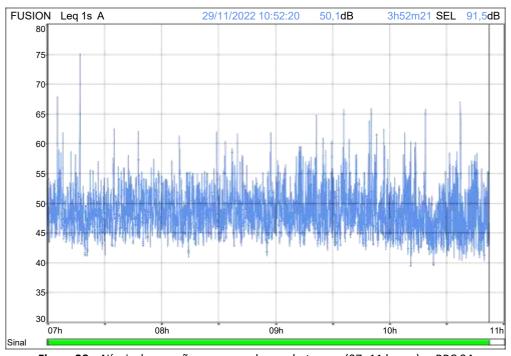


Figura 38 – Níveis de pressão sonora ao longo do tempo (07 -11 horas) – RPC 04

Na Tabela 17 é apresentado o resumo dos dados aferidos para o RPC 04 e a partir desses resultados foram calculados os parâmetros correspondentes ao L_{dia} e L_{dn} , referente ao som residual e específico. Os resultados estão apresentados na Tabela 18.

Tabela 17. Resultados no RPC 04

Classificação	Período	L_{Aeq} (dB)
	23:00 às 24:00	51,9
Som total	00:00 às 07:00	52,9

	07:00 às 22:00	57,8
	22:00 às 23:00	53,8
	23:00 às 24:00	49,8
Som residual	00:00 às 07:00	50,0
	07:00 às 22:00	54,9
	22:00 às 23:00	51,0
	23:00 às 24:00	47,7
Som específico	00:00 às 07:00	49,8
	07:00 às 22:00	54,7
	22:00 às 23:00	50,6

Tabela 18. Resultados dos níveis de pressão sonora avaliados no RPC 04

Parâmetro	Som medido (dB)	Som residual (dB)	Som específico (dB)
L_d	49,9	54,9	54,7
L_n	49,1	54,2	53,9
L_{dn}	55,6	60,7	60,5

Apêndice 5 - Memória de Cálculo - AEDT

```
Study Input Report
Study Information
     Report Date: 12/14/2022 6:38:00 AM
Study Name: SBAR_Study
Description: SBAR
Study Type: NoiseAndEmissions
Mass Units: Kilograms
     Use Metric Units: No
Study Database Information
     Study Database Version: 1.81.0
Airport Layouts
     Layout Name: SBAR Default Layout 0
     Airport Name: SANTA MARIA
Airport Codes: AJU, SBAR
     Airport Description:
     Country:
     State:
     City: ARACAJU
Latitude: -10.984000 degrees
Longitude: -37.070333 degrees
Elevation: 23.000000 feet
Runway: 30/12
Length: 7190 feet
Width: 150 feet
         Approach Displaced Threshold: 0 feet
            Departure Displaced Threshold: 0 feet
            Crossing Height: 50 feet
Glide Slope: 0.000000 deg
            Glide Slope:
Change in Headwind: 5%
Effective Date: 1/1/1900
         Runway End: 12
Latitude: -10.983686 degrees
Longitude: -37.080349 degrees
Elevation: 23.000000 feet
            Approach Displaced Threshold: 0 feet
            Departure Displaced Threshold: D feet
            Crossing Height: 50 feet
Glide Slope: 0.000000 deg
            Glide Slope: 0.600 Change in Headwind: 0% Effective Date: 1/1/1900 6/6/2079
            Glide Slope:
                         G-1
-10.986529
-37.072141
23.000000 feet
     Gate:
         Latitude:
          Longitude:
         Elevation:
```


Alreraft Size:

ANY

```
16
      SigmaY0:
      SigmaZO:
      Release Height: 4.921260 feet
Receptor Sets
-----
                    Receptor Set:
                      RECEPTOR SET POINTS
      Description:
      Number of receptors: 10
      Receptor Set Type: Receptor
      Receptor Type: Point
reptor Set: RECEPTOR SET GRID
Description: SBAR
   Receptor Set:
      Number of receptors: 1000000
      Receptor Set Type: Receptor
      Receptor Type: Grid
Latitude: -11.151214 degrees
         Longitude: -11.151214 degrees
Longitude: -37.239711 degrees
Elevation: 23.000000 feet
X Count: 1000
                      1000
         Y Count:
         X Spacing:
                     0.02
         Y Spacing:
Annualizations (Scenarios)
   Annualization (Scenario): ANNUALIZATION_SBAR_ALL
      Description: ANNUALIZATION_SBAR_ALL
Start Time: Saturday, September 17, 2022
                       01 days 00 hours
      Durations
      Air Performance Model: SAE_1845_APM
      Noise Altitude Cutoff MSL (ft): n/a
      Mixing Height AFE (ft): 3000
      Fuel Sulfur Content: 0.0006
      Sulfur Conversion Rate: 0.024
      Use Bank Angle: True
Taxi Model: UserTaxiModel
      Airport Layouts: SBAR Default Layout 0
      Annualization: ANNUALIZATION SBAR ALL
Annualization: ANNUALIZATION SBAR ALL
   Operation group: AOG SBAR
       Description: AOG_SBAR
Start time: 9/17/2022 12:00:00 AM
Duration: 01 days 00 hours
       Number of aircraft operations: 46
    Operation group: NAOG SBAR
                          NAOG SBAR
       Description:
```



```
Start time: 9/17/2022 12:00:00 AM 
Duration: 01 days 00 hours
        Number of non-aircraft operations: 22
    ______
    Operation group: RU SBAR
       Description: RU 55...
Start time: 9/17/2022 12:00:0
01 days 00 hours
                              9/17/2022 12:00:00 AM
        Number of runup operations: 4
User-Defined Aircraft Profiles
User-Specified Aircraft Substitutions
Metric Results
    Metric Result ID: 1
       Metric Result Name:
       Metric Result Description:
       Metric: Emissions Inventory
       Receptor Set: No ReceptorSet
       Annualization: ANNUALIZATION SEAR ALL
          Run Start Time: 9/17/2022 3:48:32 PM
          Run End Time: 9/17/2022 3:49:03 PM
Run Status: Complete
          Run Options: RunOptions Emissions Inventory
            Result Storage Options:
              Dispersion Results: None
               Emissions Results: Segment
              Noise Results: None
            Emissions/Performance Modeling Options:
              Weather Fidelity: Airport Weather (10YR average)
Check Track Angle: False
               Apply Delay & Sequencing Model: False
               Calculate Aircraft Engine Startup Emissions: False
               Analysis Year (VALE):
            BADA 4 Modeling Options:
               Use BADA Family 4: Use ANP/BADA 3 only
              Use ANP and BADA 3 Fallback: False
Enable reduced thrust taper: False
              Reduced thrust taper upper limit:
    Metric Result ID: 8
       Metric Result Name:
       Metric Result Description:
       Metric: DNL
       Receptor Set: RECEPTOR SET POINTS
       Annualization: ANNUALIZATION SBAR ALL
          Run Start Time: 12/7/2022 7:17:37 PM
          Run End Time: 12/7/2022 7:18:03 PM
Run Status: Complete
Run Options: RunOptions_DNL
            Result Storage Options:
```



```
Dispersion Results: None
          Emissions Results: Case
          Noise Results: Case
        Emissions/Performance Modeling Options:
          Weather Fidelity: Airport Weather (10YR average)
Check Track Angle: False
          Apply Delay & Sequencing Model: False
          Calculate Aircraft Engine Startup Emissions: False
          Analysis Year (VALE):
        BADA 4 Modeling Options:
          Use BADA Family 4: Use ANP/BADA 3 only
          Use ANP and BADA 3 Fallback: False
          Enable reduced thrust taper: False
          Reduced thrust taper upper limit:
        Noise Modeling Options:
          Atmospheric Absorption: SAE-ARP-5534
          Lateral Attenuation: ApplyLateralAttenuationToPropsAndHelos Type Of Ground: Hard
          Use Terrain: False
          Noise Line Of Sight Blockage: False
          Fill Terrain: False
          Terrain Fill In Value:
          Do Number Above Noise Level: False
Metric Result ID: 9
   Metric Result Name:
   Metric Result Description:
   Metric: LAEQD
   Receptor Set: RECEPTOR SET POINTS
                   ANNUALIZATION SBAR ALL
   Annualization:
      Run Start Time: 12/7/2022 7:20:30 PM
      Run End Time: 12/7/2022 7:20:56 PM
                     Complete
      Run Status:
      Run Options: RunOptions LAEQD
       Result Storage Options:
          Dispersion Results: None
          Emissions Results: Case
          Noise Results: Case
        Emissions/Performance Modeling Options:
          Weather Fidelity: Airport Weather (10YR average)
          Check Track Angle: False
          Apply Delay & Sequencing Model: False
          Calculate Aircraft Engine Startup Emissions: False
          Analysis Year (VALE):
        BADA 4 Modeling Options:
          Use BADA Family 4: Use ANP/BADA 3 only
          Use ANP and BADA 3 Fallback: False
Enable reduced thrust taper: False
          Reduced thrust taper upper limit:
        Noise Modeling Options:
          Atmospheric Absorption: SAE-ARP-5534
          Lateral Attenuation: ApplyLateralAttenuationToPropsAndHelos
          Type Of Ground: Hard
          Use Terrain: False
          Noise Line Of Sight Blockage: False
          Fill Terrain: False
          Terrain Fill In Value:
          Do Number Above Noise Level: False
Metric Result ID: 10
   Metric Result Name:
```



```
Metric Result Description:
Motric: DNL
Receptor Set: RECEPTOR SET GRID
                ANNUALIZATION SBAR ALL
Annualizations
  Run Start Time: 12/7/2022 8:06:25 PM
   Run End Time: 12/7/2022 8:14:02 PM
   Run Status: Complete
  Run Options:
                 RunOptions DNL
    Result Storage Options:
       Dispersion Results: None
       Emissions Results: Case
       Noise Results: Case
     Emissions/Performance Modeling Options:
       Weather Fidelity: Airport Weather (10YR average)
Check Track Angle: False
       Apply Delay & Sequencing Model: False
       Calculate Aircraft Engine Startup Emissions: False
       Analysis Year (VALE):
     BADA 4 Modeling Options:
       Use BADA Family 4: Use ANP/HADA 3 only
       Use ANP and BADA 3 Fallback: False
Exable reduced thrust taper: False
       Reduced thrust taper upper limit:
     Noise Modeling Options:
       Atmospheric Absorption: SAE-ARP-5534
       Lateral Attenuation: ApplyLateralAttenuationToPropsAndHelos
       Type Of Ground: Hard
       Use Terrain: False
       Noise Line Of Sight Blockage: False
       Fill Terrain: False
       Terrain Fill In Value:
       Do Number Above Noise Level: False
```

User-defined noise spectral class data for one-third octave bands between 50 Hertz and 10,000 Hertz for bands 17-40

MATERIAL TO A TO A TO A TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO A TOTAL T

No User Defined Spectral Classes

Apêndice 6 – Equipe Técnica

EQUIPE RESPONSÁVEL SONORA ENGENHARIA

Dr. Edson Benício de Carvalho Júnior

Pesquisador e consultor em Engenharia Acústica

Engenheiro Civil - CREA: 31125/D - DF

Cel: (61)98402-3014

e-mail: edson.benicio@sonoraengenharia.com.br

Dr. Sérgio Luiz Garavelli

Pesquisador e consultor em Engenharia Acústica

Cel: (61)99983-6763

e-mail: sergio.garavelli@sonoraengenharia.com.br

Gabriela Soares Garavelli

Arquiteta e Urbanista

Registro Nacional: A162012-6

e-mail: gabriela.garavelli@sonoraengenharia.com.br

Lucas Soares Garavelli

Engenheiro de Produção

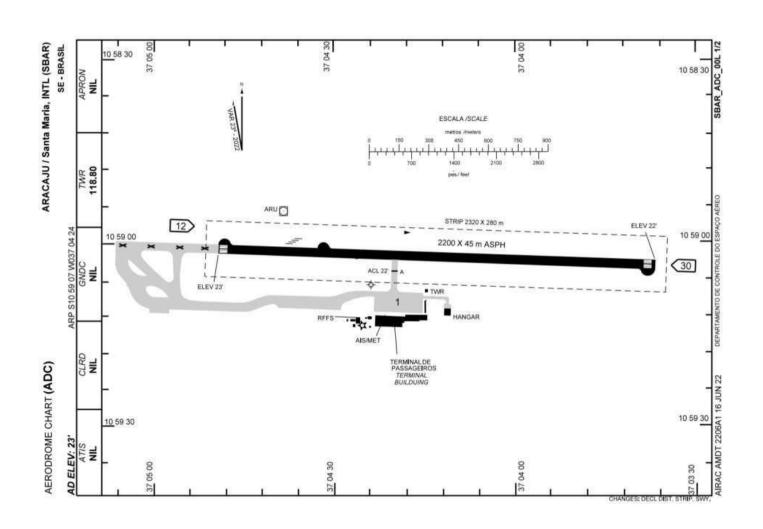
e-mail: lucas.garavelli@sonoraengenharia.com.br

Giovana de Castro Benício

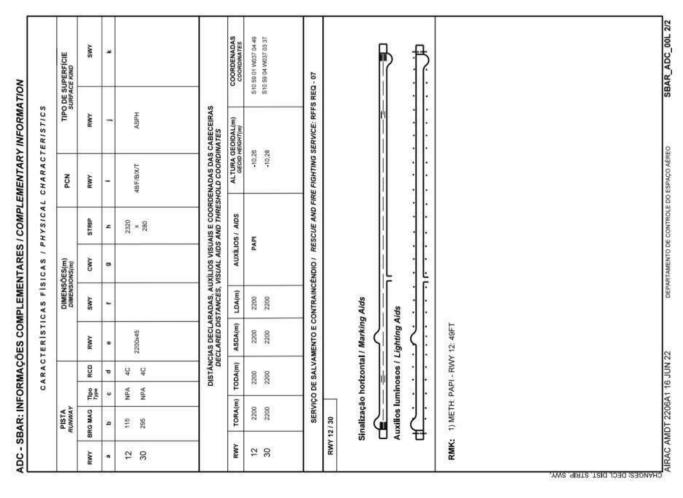
Estagiária de Engenharia

EQUIPE RESPONSÁVEL – AENA BRASIL

Regiane Ribeiro


Gerente de Compliance Técnico, Qualidade, Safety & Meio Ambiente

Diego Bravo Alves


Analista de Meio Ambiente, Qualidade e Safety

Anexo 1 – Carta do Aeródromo

Fonte: AISWEB (2022)

Anexo 2 – Certificado de calibração dos equipamentos

Certificado de Calibração

Certificado Nº: 138.684

Página 10 de 12

Calibração segundo a IEC 61260 para banda de terço

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 21 d8 a 138 dB Parâmetro: dB (Z) Slow

req.Nom.	Freq.Exata	F1	F2	F3	F4	F5	F6	F7	F8	P9
25	25,119	(0)	100	(8)	27,8	2,7	2,7	1,0	0,3	0,3
31,5	31,623	1.00	(0)	05	27,7	2,5	2,5	0,7	0,6	0,3
40	39,811	4	10	(2)	26,7	2,4	2,3	0,5	0,3	0,3
50	50,119	1960	10	95	27,3	2,2	2,2	0,4	0,2	0,2
63	63,096	100	10	10	27,3	2,3	2,3	0,4	0,2	0,1
80	79,433	90	30	100	26,6	2,2	2,2	0,3	0,1	0,1
100	100	90	- 00	100	27,4	2,3	2,2	0,3	0,1	0,1
125	125,89	10		100	27,4	2,4	2,4	0,2	0,0	0,0
160	158,49	1953	107	100	26,8	2,4	2,3	0,2	0,0	0,0
200	199,53	16	30	(8)	27,7	2,5	2,5	0,2	0,0	0,0
250	251,19	100	-00	m.	27,7	2,7	2,7	0,3	0,0	0,0
315	316,23	ie:	10	100	27,0	2,7	2,7	0,3	0,1	0,0
400	398,11	100	10	100	28,0	2,8	2,8	0,2	0,0	0,0
500	501,19	190	- 30	100	28,0	3,0	3,0	0,3	0,0	0,0
630	630,96	UE.	D.	1	27,3	3,0	2,9	0,3	0,0	-0,1
800	794,33	00	-10	16	28,2	3,1	3,1	0,3	0,0	-0,1
1000	1000,0	×	-00	- 40	28,2	3,3	3,3	0,3	-0,1	0,0
1250	1258,9	inc.	10	100	27,6	3,3	3,3	0,4	0,0	0,0
1600	1584,9	ot.	700	100	28,6	3,5	3,5	0,4	0,0	0,0
2000	1995,3	i.e.	10.	100	28,6	3,8	3,8	0,5	0,0	0,0
2500	2511,9	or	30	100	28,0	3,7	3,7	0,5	0,0	0,0
3150	3162,3	œ	10	36	28,9	3,9	3,9	0,5	0,1	0,0
4000	3981,1	oc.	10.	*	29,0	4,1	4.1	0,5	-0,1	-0,2
5000	5011,9	00	T)	00	28,1	3,8	3,8	1,0	-0,3	-0,3
6300	6309,6	(e)	10	10	28,9	4,0	4,0	0,3	-0,2	-0,2
8000	7943,3	· or	100	100	29,0	4,6	4,6	0,7	0,0	0,0
10000	10000	oc.	10	100	28,6	4,6	4,6	0,8	0,1	0,1
12500	12589	×	10	90	27,8	4,7	4,7	0,9	0,1	0,0
16000	15849	Ø	10	.00	25,6	4,8	4,8	1,1	0,1	0,0
20000	19953	(c	10	-00	21,4	4,2	4,2	1,2	0,1	-0,2
TL Tipo		3>70	3>61	15-42	1>17.5	55452	5>4>0.3	1,354>0.3	0.6>4>-0.3	0.4545

Av. Eng^{er} Saraiva de Oliveira, 465 - 05741-200 - Jd. Tabolio - São Paulo - SP - Brasil Fone: 55 11:3384-9320 - www.chrompack.com.br ABONATONIO DE INJURNAÇÃO ACRESTACIO PELA CIDINE DE ACORDIO COM ARRYT NER BIOLEC 11528 508 ID NUMERO 256.

Certificado de Calibração Cartificate of Calibration

Certificado Nº: 138.684

Página 11 de 12

Calibração segundo a IEC 61260 para banda de terço (continuação)

Freq.Nom.	Freq.Exata	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19
25	25,119	0,3	0,3	0,2	1,2	4,7	4,6	32,4	(0)	1	00
31,5	31,623	0,3	0,3	0,5	1,2	4,7	4,6	33,3	95	×	QC:
40	39,811	0,3	0,3	0,3	1,3	4,4	4,5	34,5	(8)	*	90
50	50,119	0,3	0,2	0,2	1,2	4,7	4,7	31,8	90	20	90
63	63,096	0,2	0,2	0,2	1,1	4,7	4,8	32,8	100	10	00
80	79,433	0,1	0,1	0,1	0,9	4,7	4,7	34,0	.00:	oc:	90
100	100	0,1	0,1	0,1	0,8	5,0	4,9	31,3	30	26	16
125	125,89	0,0	0,0	0,1	0,8	5,0	4,8	32,3	100:	- 00	90
160	158,49	0,0	0,0	0,0	0,7	4,2	4,2	33,5	00	10	95
200	199,53	0,0	0,0	0,0	0,6	4,5	4,5	31,0	10	0	185
250	251,19	0,0	0,0	0,0	0,6	4,7	4,7	31,9	00	00	90
315	316,23	0,0	0,0	0,0	0,5	4,6	4,6	33,2	- 99	10	ut:
400	398,11	0,0	0,0	0,0	0,5	4,0	4,0	30,6	100	100	· 60
500	501,19	0,0	0,0	0,0	0,5	4,1	4,1	31,6	- 00	20	or;
630	630,96	0,0	-0,1	0,0	0,4	4,1	4,1	32,8	00	2	ge.
800	794,33	-0.1	0,0	-0,1	0,3	3,6	3,6	30,2	95	2	-00
1000	1000,0	-0,1	-0,1	0,0	0,4	3,7	3,7	31,2	10	10	30
1250	1258,9	0,0	0,0	0,0	0,4	3,7	3,7	32,5	90	1	127
1600	1584,9	0,0	0,0	0,0	0,3	3,3	3,3	30,0	0		00
2000	1995,3	0,0	0,0	0,0	0,3	3,3	3,3	30,9	00	20	on.
2500	2511,9	0,0	0,0	0,0	0,3	3,3	3,3	32,0	90	20	00
3150	3162,3	-0,1	-0,1	-0,1	0,1	2.7	2,8	29,4	ob	10	d
4000	3981,1	-0,2	-0,3	-0,3	0,0	2,6	2,6	30,1	10	20	00
5000	5011,9	-0,3	-0,3	-0,3	-0,1	2,5	2,5	31,5	90	4	œ
6300	6309,6	-0,2	-0,2	-0,2	0,1	2,5	2,5	29,4	900	90	00
8000	7943,3	0,0	0,1	0,1	0,2	2,7	2,7	30,3	99	20	·
10000	10000	0,1	0,1	0,1	0,2	2,5	2,5	31,3	-00:	700	00:
12500	12589	0,0	0,0	0,0	0,2	2,6	2,6	33,7	-00	30	ot
16000	15849	0,0	0,0	-0,1	-0,1	2,4	2,4	38,2	100	70:	00
20000	19953	-0,2	-0,2	-0,2	-0,1	2,4	2,4	86,4	100	90	90
TLTipo		0.3>4>0.3	0.4>4>-0.3	0.6>4>0.3	1.3>4>0.3	5>4>-0.3	5>4>2	A>17.5	4>42	4>61	4>70

Av. Eng" Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br LANDRATÓRIO DE CALIMRAÇÃO ADREDITADO PELA COCRE DE ACORDO COMINABINTIMER. ISOJEC 1708. SOB O NÚMERO 256

Certificado de Calibração

Certificate of Calibration

Certificado Nº: 138.684

Página 12 de 12

Método de Medicão:

Os resultados foram obtidos através da aplicação de sinais elétricos, substituindo o microfone por adaptador com capacitância equivalente, os sinais são específicados pela norma IEC 61672 de modo a satisfazer os testes descritos como: Acústico com Microfone Instalado: Ajuste com Microfone; Ruido Auto-gerado e Ponderação em Frequência. Elétrico: Ruido Auto-gerado sem o Microfone; Ponderação em Frequência; Ponderações em Frequência e no Tempo em 1 kHz; Linearidade de Nivel na faixa de referência; Resposta a Pulsos Tonais; Pico C e Indicação de Sobrecarga; Estabilidade em nivel Alto e Estabilidade de longa duração.

Referente a norma IEC 61260

fm: Frequência central (indicador do instrumento)
F1 à F19: Resultado expresso em dB obtido através da aplicação das 19 (dezenove) frequências especificadas pela IEC 61260
em relação às fm. Corresponde ao Valor do desvio apresentado em relação a 94,0 dB.
TL: Tolerância especificada pela IEC 61260 expressa em dB

Observações:

- ☑ Condições ambientais: Temperatura: Inicial 23,1°C e Final 24,1°C Umidade relativa media: Inicial 54,1% e Final 55,3% Pressão atmosférica: Inicial 922,4mbar e Final 923,4mbar
- ☑ Desvio: diferença entre o nível indicado e nível esperado.
 ☑ Anotação de Responsabilidade Técnica ART 28027230220241416 / CREA-SP.

Responsável pela calibração e Signatário autorizado

José Niton

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Tabošo - São Paulio - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATÓRIO DE GALIBRAÇÃO ADREDITADO PELA CÚCIPE DE ACORDO COM A ABINT ABR. (BOREC 1703). SOB O KÚMERO 286

CALILAB - Laboratório de Calibração e Ensaios ISO 17025: Laboratório Acreditado (Accredited Laboratory)

TOTAL SAFETY LTDA.

R Gal Humberto AC Branco, 286 (310) São Caetano do Sul - CEP 09560-380 Tel: (11) 4220-2600 info@totalsafety.com.br www.totalsafety.com.br

CERTIFICADO DE CALIBRAÇÃO

Nº: RBC3-11893-554

RBC - REDE BRASILEIRA DE CALIBRAÇÃO

Processo / O.S.:

Acoem Brasil Comércio de Equipamentos Ltda. CLIENTE

Alameda dos Maracatins, 780 - Cj. 1903 - Moema

São Paulo - SP - CEP 04089-001

Sonora Ambiental Projetos Ambientais e Educacionais Ltda. Interessado

R. das Figueiras, Lote 07 - Loja 66 a 69- 042 Norte (Águas Claras) - Brasilia - DF - CEP 71906-750

Item calibrado

Californied /tem

Marca

Modelo

Número de série

Identificação

Analisador de oitavas (classe 1)

01dB

Fusion

13292

(informações adicionais na página 2):

Calilab é um Laboratório de Calibração Acreditado pela Ogore (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Este certificado atende aos requisitos de acreditação pela Ogore que avaliou a competência do laboratório e comprovou a sua rastreabilidade a padrões nacionais de medida (ou ao Sistema Internacional de Unidades - SI).

Este certificado é válido apenas para o item descrito, não sendo extensivo a quaisquer outros, ainda que similares. Este certificado somente pode ser reproduzido em sua forma integral e desde que seja legivel. Reproduções parciais ou para fins de divulgação em material publicitário. requerem autorização expressa do laboratório. Nenhuma reprodução poderá ser usada de maneira enganosa.

A versão original deste certificado é um arquivo PDF.

Data da calibração

Date of paligration (day/month/year)

25/07/2022

Assinado de forma digital por Enrique Bondarenco DN: cn=Enrique Bondarenco, o=Total Safety Ltda_ou=Calilab. email=enrique@totalsafe ty.com.br, c=BR Dados: y-ry_-yay vituely

Total de páginas

10

Data da Emissão:

Enrique Bondarenco Signatário Autorizado 25/07/2022

Página

1

A Cgcre é signatária do Acordo de Reconhecimento Mútuo da ILAC (International Laboratory Accreditation Cooperation). A Cgcre é signatária do Acordo de Reconhecimento Mútuo da IAAC (Interamerican Accreditation Cooperation).

Cycre is Signatory of the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Arrangement. Cycre is signatory of the IAAC (Interamerican Accreditation Cooperation) Mutual Recognition Arrangement.

Página

Laboratório de Calibração Acreditado pela Ogcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Local da calibração

Castivator incator

Sede do laboratório Calilab (conforme indicado na página 1).

Condições ambientais

Environmental conditions

 Temperatura
 22,9 ℃

 Umidade relativa
 48 %

 Pressão atmosferica
 932 hPa

Procedimento

Procedur

IT-572: Método de calibração de acordo com a ABNT NBR IEC 61672-3:2018 - Eletroacústica - Sonómetros: Testes Periódicos (ad oção idêntica à IEC 61672-3:2013 - Electroacoustics - Sound level meters - Periodic Test). Por este procedimento são realizados testes elétricos bem como testes acústicos. Adicionalmente, são verificados os filtros com o procedimento IT-582, cujo método incorpora testes baseados na IEC 61260 (edição aplicavel). A revisão dos procedimentos utilizados são aqueles em vigência na data desta calibração. O conjunto de parâmetros calibrados atende a recomendação do documento DOQ-CGCRE-052.

Plano de calibração

-Calibration plan

Os critérios de seleção do metodo atendem aos requisitos da ISO 17025. O plano de calibração é elaborado e pactuado observando, o uso de métodos apropriados, as características do item sob teste e as necessidades do cliente. Para que o serviço de calibração complete sua finalidade, o laboratório recomenda que este certificado de calibração seja submetido a análise critica, observando os erros de medição reportados e as incertezas associadas a cada teste, avaliando o impacto que cada parâmetro tem sobre as medições. Sempre que pertinente, são incluidas informações adicionais sobre contrato, solicitações do cliente, plano de calibração e configurações do item. Ajustes e reparos não fazem parte do escopo de acreditação.

Imparcialidade e confidencialidade

mosthavity and confidentiality

De acordo com a ISO 17025-2017 o laboratório não pode permitir que pressões comerciais, financeiras ou outras comprometam a impercialidade. A norma identifica situações de risco à imparcialidade quando os relacionamentos são baseados em propriedade, governança, gestão, pessoal, recursos compartilhados, finanças, contratos, marketing (incluindo promoção de marcas) e pagamento de comissões de vendas ou outros beneficios pela indicação de novos clientes. Para assegurar a independência do CALILAB e promover um ambiente neutro, de equidade e sem conflitos de interesses, a Total Safety optou por mantier-se livre de quaisquer associações que a identifiquem como uma parte interessada. O CALILAB e, portanto, um LABORATÓRIO DE TERCEIRA PARTE e não se beneficia em detrimento de resultados de calibrações ou ensaios que sejam favoráveis ou desfavoráveis ao prestigio de uma determinada marca ou modelo. O CALILAB também assegura a seus clientes o atendimento de todos os requisitos de confidencialidade previstos na ISO 17025-2017.

Incerteza de Medição

Measurement uncertainty

Os resultados reportados referem-se à media dos valores encontrados. Cada incerteza Expandida de Medição (U) relatada é declarada como a incerteza padrão de medição multiplicada pelo fator de abrangência k = 2.00, para uma probabilidade de abrangência de aproximadamente 95%. Quando o fator de abrangência k è um valor diferente de 2.00 o valor de k é reportado juntamente com os resultados. A expressão da incerteza de medição e determinada de acordo o Guía para a Expressão da incerteza (GUM). A capacidade de medição e calibração (CMC) do laboratório Calilab e informada no site do inmetro. Em uma determinada calibração a incerteza reportada podera ser maior do que a CMC.

Informações adicionais do item sob teste

Admitional information

O sonômetro foi submetido aos testes com um microfone marca G.R.A.S., modelo 40CE, s/n 408858, pré-amplificador marca 01dB, modelo integrado, A calibração foi realizada na configuração de 0° e entrada integrada. Os resultados reportados no teste acústico incluem as correções de reflexão do corpo do sonômetro, difração do microfone e efeitos do protetor de vento obtidos no manual do fabricante. Software instalado; Versão HW: LIS006F; FW Aplicação: 2.72,

Rastreabilidade

Praceability

Gerador: Identificação P234, Certificado DIMCI 1214/2019 (Emitente INMETRO/Laeta)

Calibrador Multi-frequência: Identificação P280, Certificado RBC2-11795-354 (Emitente RBC/Califab)

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

RESULTADOS DA CALIBRAÇÃO

Repults

Indicação in	sicial a indic	acan anne	Leutnovo c	aiusta (ra	forância	actical
indicação ir	ncial e indic	acao apos o	o eventuar.	anuste crei	rerencia	acusticai

caratar information

indicação	referência	indicação	I
inicial	(dB)	(dB)	
FICE	93,7	93,4	1

indicação	referência	indicação
após eventual	(dB)	(dB)
ejuste	93,7	93,7

Caroner distanti
frequência
(NA)
1000.0

Linearidade na faixa de referência (em 8000 Hz, com ponderação A)

simulação elétrica

excitação	emo
(dB)	(dB)
138,0	-0,2
137,0	-0,2
136,0	-0.1
135,0	-0,2
134,0	-0,2
129,0	-0,2
124,0	-0,1
119,0	-0,2
114,0	-0,1
109,0	-0,1
104,0	0,0
99,0	0,0
94,0	0,0
89,0	0,0
84,0	0,0
79,0	0,0
74,0	0,0
69,0	0,0
84,0	0,0
59,0	0,0
64,0	0,0
49,0	0,0
44,0	0,0
39,0	0,0
34,0	0,0
29,0	0,1
28,0	0,1
27,0	0.2
26,0	0,2
25,0	0,4
24,0	0,3
23,0	0.4
22,0	0,6
21,0	0,7
	- 2

tolerância +	tolerância -
(dB)	(dB)
0.8	-0,8

	- or many an area
limite superior	nivel de
de linearidade	referência
(dB)	(dB)
138	94,0
1,00	84,0

limite inferior
de linearidade
(dB)
24

incerteza
de 42 a 138
(dB)
0,2

incerteza	
de 21 a 41	
(dB)	
0.2	Ī

_		-
	faixa de	
	referência	
	(dB)	
n	139,0	

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

inicio de faixa	excitação	erro	final de faica	excitação	erra	nível referência
(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
129	18	**	0.00	13.		***
(e)			5 000 3	13. 1		(1)
- 54	12	48	1320	0		incerteza
19 .	38	91	8 3 8	8	~	(dB)
61	85	25	3527	135	9.	He
-		(4)		- 34		
94	12	\$7	388	- 1		tolerância (+/-)
39	18	96	8 1 8	18	· ·	(dB)

Testes elétricos de curvas de ponderação em frequência A, C e Z (como aplicável) normalizado em 1000 Hz frequência erro pand "A" tolerância + tolerância -[Hz] (dB) (d8) (dB) (dB) -1,0 63 -0.1 1.0 94,0 -0.1 1,0 -1.0 125 250 0,0 1,0 -1,0 incerteza ("A") 0,0 1,0 -1,0 500 (dB) 1000 0.0 0.7 -0,7 0,2 0,0 1,0 -1,0 4000 0,0 1,0 -1,0 -2.5 8000 -0,4 1,5 16000 -5.1 2,5 -16,0

nivel referência	3333334414	tolerância -	tolerância +	erro pand "C"	equência
(dB)		(dB)	(dB)	(dB)	[Hz]
94,0		-1,0	1,0	0,0	63
-		-1,0	1,0	0,0	125
incerteza (°C*)		-1.0	1.0	0,0	250
(dB).		-1,0	1.0	0,0	500
0,2		-0,7	0,7	0,0	1000
***************************************		+1,0	1,0	0,0	2000
		-1,0	1,0	0,0	4000
		-2,5	1,6	-0,4	8000
	1	-16,0	2.5	-5.1	16000

nivel referênci	0/1	tolerância -	tolerância +	erro pond "Z"	equência
(dB)		(dB)	(dB)	(dB)	[Hz]
94,0		-1,0	1,0	0,0	63
Me		-1,0	1,0	0,0	125
incerteza (*Z*)	· ·	-1,0	1,0	0,0	250
(dB)		-1,0	1,0	0,0	600
0,2		-0,7	0.7	0.0	1000
10		-1,0	1,0	0,0	2000
		-1,0	1,0	0,0	4000
		-2,5	1,5	0,1	8000
	7	-16,0	2,6	0,0	16000

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Ponderações no tempo e na frequência em 1 kHz (A. C. Z)

testes na faixa de referência (simulação elétrica)

delações no te	mpo e na nequ	encia em i r	(112 (M, O, Z)	cesses na taixa de reia eficia (sendiação elec
excitação	emo	епо	tolerância	incerteza
pand. (A, F)	pond, (C, F)	pond. (Z, F)		(dB)
(dB)	(dB)	(dB)	(dB)	0,1
94,0	0,0	0,0	0,2	
	excitação pand. (A, F) (dB)	exctação emo pond. (A, F) pond. (C, F) (dB) (dB)	exctação erro erro pond. (A, F) pond. (C, F) pond. (Z, F) (dB) (dB) (dB)	pond. (A, F) pond. (C, F) pond. (Z, F) (dB) (dB) (dB)

Ponderações no tempo e na frequência em 1 kHz (S, Leq)

testes na faixa de referência (simulação elétrica)

excitação	erro	епо	tolerância
pand, (A, F)	pond. (A. S)	pond (A, Leg)	
(dB)	(dB)	(dB)	(dB)
94,0	0,0	0,0	0,1

incerteza (dB) 0.1

Resposta a pulsos tonais (F; S; LAE)

testes executados conforme aplicável

œ:	sposta a puis	os tonais (, S, LAL				500,000	
9	parâmetro sob teste	largura do trem (ms)	nival esperado (d8)	erro (dB)	tolerância + (dB)	tolerância - (dB)	incerteza (dB) (dB)	
	Fast	200	134,0	0,1	0,5	-0,5	0,2	ì.
	Fast	2	117,0	0,0	1,0	-1,5	0,2	
	Fast	D,25	108,0	-0,3	1,0	-3,0	0,2	Г
	Slow	200	127,6	0.0	0,5	-0,5	0,2	ľ
	Slow	2	108.0	0,0	1,0	-3,0	0,2	
	LAE	200	128.0	0,1	0,5	-0,5	0,2	
	LAE	2	108,0	0,0	1,0	-1,5	0,2	L
	LAE	0,25	99,0	-0,2	1,0	-3,0	0,2	ľ

nivel referência (dB) 135,0

Missal	sonoro	do ni	CO DOE	dorado	am C
MINE	2011010	ue pi	CO DOI	iuei au o	emo

testes executados conforme aplicável

el solloto de bico bolic	relado elli o				540,400.4
sinal de teste	nivel esperado (dB)	erro (dB)	toleráncia + (dB)	tolerância - (dB)	incerteza (dB)
ciclo completo de 8 kHz	135,4	0,0	2.0	-2,0	0,2
semiciclo positivo 500 Hz	134,4	0,0	1,0	-1,0	0,2
semiciclo negativo 500 Hz	134,4	0,0	1,0	-1,0	0,2

nivel referência (dB)

Indicação de sobrecarga e teste de estabilidade

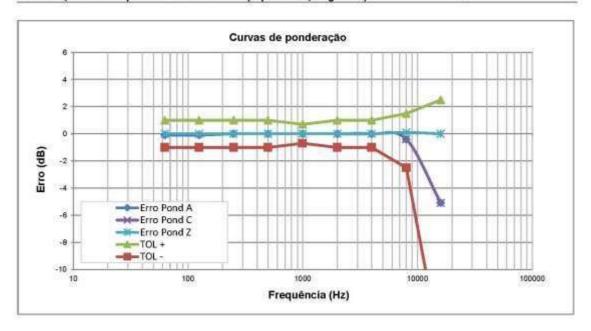
sobrecarga: aplicável a sonômetros que indicam LAeg.

este de est	abilidade	socrecarga: apricaver a sonon	neiros que intilicam Liveq, i
indicação (dB)	erro absoluto (dB)	tolerância (dB)	incerteza (dB)
141,4	0.5	1.5	0.2
141,9	9,2	1.3	9,2
94,0	0,0	0,1	0,1
137,0	0,0	0,1	0,1
	indicação (dB) 141,4 141,9 94,0	indicação erro absoluto (dB) (dB) (dB) 141,4 0,5 141,9 0,0	(dB) (dB) (dB) 141,4 0,5 141,9 0,5 94,0 0,0 0,1

Ruido auto-gerado

configuração de entrada	ponderação em frequência	especificado (dB)	medido (dB)	incerteza (dB)
microfone instalado	A	18,5	17,3	0,8
dispositivo de entrada elétrica	A	14,9	11,3	
dispositivo de entrada elétrica	C	15,5	12,2	0,6
dispositivo de entrada elétrica	Z	18,5	15,5	

O nivel de ruido autogerado (commicrofone instalado ou com dispositivo de entrada elétrica) é reportado somente para informação e não é utilizado para avaliar a conformidade a um requisito. A incerteza e interpretada neste contexto. A norma não estabelece um critério para a mesma.



Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Ponderações em frequência - Teste elétrico (representação gráfica)

(dados normalizados em 1000 Hz)

Teste acústico (normalizado em 1000 Hz)

resultados reportados corrigidos para CAMPO LIVRE

frequência [Hz]	nivel de referência (dB)	erro (dB)	tolerância + (dB)	tolerāncia - (dB)	incerteza (dB)
125	94,0	-0,2	1.0	-1,0	0,5
15	- S	.e.;		3	54
()	18		1		- 18
1000	94,0	0,0	0,7	-0,7	0,4
-11		¥3			12
		*		9.	38
8000	94,0	-1,0	1,5	-2,5	0,6

139	
k	
2,00	۲

O TESTE ACÚSTICO refere-se ao conjunto SONÓMETRO-MICROFONE para o campo sonoro reportado. O sonómetro permaneceu configurado com ponderação C. A menos que o cliente necessite um certificado de calibração exclusivo para microfone, o teste acústico é suficiente para caracterizar a resposta em frequência do conjunto, sonómetro-microfone, no contexto da norma IEC 61672. Os resultados reportados correspondem às condições de CAMPO LIVRE, isto é, niveis sonoros equivalentes aqueles que seriam indicados em resposta às ondas sonoras progressivas planas incidentes a partir da direção de referência. O teste acústico foi executado com um calibrador multi-frequência e posterior aplicação de correções. Os resultados reportados no teste acústico não se aplicam a indicações obtidas com incidência aleatória ou em campo de pressão (as indicações nestes campos requerem aplicação de correções ou uma calibração especifica no campo de interesse).

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Filtros de oitavas de classe 1 / Base 2

Lref em 1000 Hz = 135,0 dB

Frequência	L_Sup	L_Inf	16	31,5	63	125	250	500	1000	2008	4000	8000	16000	+/-0	k
fm x 0,063	65,0		0,0	0.0	0,0	0,0	0,0	0,0	0,0	0.0	0,0	0,0	0,0	1,0	2,00
fm × 0,125	74,0	***	0,0	0,0	0.0	0,0	0.0	0.0	0.0	0.0	0,0	0.0	0,0	0,7	2.0
fm x 0,250	93.0		0,0	0,0	0,0	0,0	0,0	0,0	0.0	0.0	0,0	0.0	97,8	0,4	2,0
fm x 0,500	117,5	399	109,4	110,4	110,5	110,5	110,5	110,5	110,6	110,6	110,6	110,6	115,9	0.3	2,0
fm x 0,707	133,0	130,0	131,9	131,8	131,9	131,9	131,9	131,9	131,9	131,9	131,9	131,9	131,9	0.2	2.0
fm x 0,739	135,3	130,0	133,7	133,5	133,6	133,6	133,6	133,6	133,7	133,7	133.7	133.6	133.2	0,2	2.0
fm x 0,771	135,3	133,7	134,5	134,4	134.4	134.4	134,4	134,5	134,5	134,5	134.5	134.5	134.0	0.2	2,0
fm x 0,841	135,3	134,4	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134.9	134,9	134.8	0,2	2,0
Im x 0,917	135,3	134,6	134,9	134,8	134,9	134,9	134,9	135,0	135,0	135,0	135,0	134.9	134,9	0,2	2,0
fm	135,3	134,7	134,9	134,9	134,9	134,9	134,9	135,0	135,0	135,0	135.0	134,9	135,0	0,2	2,0
fm x 1,091	135,3	134,6	134,9	134,9	134,9	134,9	134,9	135,0	135,0	135,0	135,0	134,9	135.1	0,2	2,0
fm x 1,189	135,3	134,4	134,9	134,9	134,9	134,9	134,9	135,0	135,0	135,0	135,0	134,9	135,1	0.2	2.0
fm x 1,297	135,3	133,7	134,6	134,7	134,7	134,7	134,7	134,8	134,8	134,8	134,8	134,7	135,1	0,2	2,0
fm x 1,356	135,3	130,0	133,9	134,0	134,0	134,0	134,0	134,0	134,1	134,1	134.0	134,0	134,9	0,2	2.0
fm x 1,414	133,0	130,0	132,2	132,1	132,2	132,2	132,2	132,2	132.2	132.2	132,2	132.1	130.9	0.2	2,0
fm x 2,000	117,5	+++	107,7	100,1	100,1	100,1	100,2	100,2	100,2	100.2	100,1	100.2	0,0	0,3	2,0
fm x 4,000	93,0	***	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0.0	0,0	0.0	0,0	0,4	2,0
fm x 8,000	74,0	+	0,0	0,0	0,0	0,0	0,0	0,0	0.0	0,0	0,0	0.0	0,0	0,7	2,0
fm x 16,000	65.0		0.0	0,0	0,0	0,0	0,0	0,0	0.0	0.0	0.0	0.0	0.0	1.0	2.0

U = incerteza de medição.

As frequências de teste são calculadas a partir da frequência central e de multiplicadores (como consta na primeira coluna). Por exemplo: O filtro de frequência nominal 500 Hz, cuja frequência exata, para base 10, é de 501,187 Hz, o segundo ponto acima da frequência central, pode ser calculado como: fm x 1,188 = 595,410 Hz.

L_Sup = limite superior de tolerância definido pela norma para uma determinada frequência de teste.

L_inf = limite inferior de tolerância definido pela norma para uma determinada frequência de teste. A norma não define um limite inferior para aquelas frequências preenchidas com uma linha tracejada ("---"). Na prática, a atenuação nestas frequências pode ser menos infinito.

As frequências centrais identificadas na primeira linha da tabela correspondem às frequências nominais.

As frequências centrais exatas de cada filtro (fm) são calculadas conforme a ISO 266.

Eventuais resultados = 0,0 dB correspondem a indicações de, pelo menos. 10 dB abaixo do limite L_Sup correspondente.

As tolerâncias identificadas na(s) tabela(s) não contemplam as incertezas de medição. Estas podem e devem ser consideradas como parte do resultado para estabelecer um critério de aceitação.

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Filtros de terços de oitava de classe 1 / Base 2 (tabela 1/3)

Lref em 1000 Hz = 135,0 dB

Frequênc	a L_Sup	L_Inf	16	20	25	31	40	50	63	90	100	125	190	+1-U	k
fm x 0, 18	65,0	***	0.0	0.0	0,0	0,0	0,0	0,0	0,0	0.0	0,0	0,0	0,0	1,0	2,00
fm × 0,32	74,0	***	0,0	0,0	0.0	0,0	0.0	0.0	0.0	0.0	0,0	0.0	0,0	0,7	2.00
fm x 0,53	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0.0	0.0	0,0	0.0	0,0	0,4	2,00
fm x 0,77	117,5	349	106,3	106,9	106,4	106,4	107,2	106,4	106,5	107,2	108.4	106.5	107,3	0.3	2,00
fm x 0,89	1 133,0	130,0	131,6	131,9	131,6	131,5	131,6	131,6	131,5	131,6	131,6	131,5	131,7	0.2	2,00
fm x 0,90	135,3	130,0	133,6	133,8	133,6	133,6	133,6	133,6	133,6	133,6	133,6	133.6	133.6	0,2	2,08
fm x 0,91	135,3	133,7	134,6	134,6	134,5	134,5	134,5	134,6	134,5	134,5	134.6	134.5	134.5	0.2	2,00
fm x 0,94	7 135,3	134.4	134,8	134,9	134,9	134,9	134,9	134,9	134,9	134.9	134,9	134,9	135.0	0,2	2,00
fm x 0,97	135,3	134,6	134,8	134,9	134,9	134,9	134,9	134,9	134,9	134,9	135,0	135.0	135.0	0,2	2,00
fm	135,3	134,7	135,0	134,9	134,9	134,9	135,0	134,9	134,9	135,0	135.0	135,0	135,0	0,2	2,90
fm x 1,02	7 135,3	134,6	134,9	134,9	134,9	134,9	134,9	134,9	134,9	135,0	134,9	135.0	135.0	0.2	2,00
fm x 1,06	135,3	134,4	134,9	134,9	134,9	134,9	135,0	134,9	134.9	134,9	134,9	134.9	135,0	0.2	2.00
fm x 1,08	135,3	133,7	134,6	134,6	134,5	134,5	134,6	134,6	134,5	134,5	134,6	134.6	134,6	0,2	2,00
fm x 1,10	5 135,3	130,0	133,6	133,7	133,5	133,4	133,4	133,5	133,4	133,4	133,6	133,5	133,5	0.2	2,00
fm x 1,12	2 133,0	130,0	131,6	131,8	131,3	131,1	131,0	131,4	131,1	131,0	131.4	131.1	131,1	0.2	2,00
fm x 1,29	117,5	+++	105,5	105,8	104,6	103,5	102,2	104,6	103,6	102.2	104.6	103.6	102.3	0,3	2,00
fm x 1,88	7 93,0	***	0,0	0,0	0,0	0,0	0,0	0,0	0.0	0,0	0,0	0.0	0,0	0,4	2,00
fm x 3,07	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0.0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 5,43	65.0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	.2.00

U = incerteza de medição.

As frequências de teste são calculadas a partir da frequência central e de multiplicadores (como consta na primeira coluna). Por exemplo: O filtro de frequência nominal 125 Hz, ouja frequência exata, para base 10, é de 125,893 Hz, o segundo ponto acima da frequência central, pode ser calculado como: fm x 1,056 = 132,943 Hz.

L_Sup = limite superior de tolerância definido pela norma para uma determinada frequência de teste.

L_inf = limite inferior de tolerância definido pela norma para uma determinada frequência de teste. A norma não define um limite inferior para aquelas frequências preenchidas com uma linha tracejada ("---"). Na prática, a atenuação nestas frequências pode ser menos infinito.

As frequências centrais identificadas na primeira linha da tabela correspondem às frequências nominais.

As frequências centrais exatas de cada filtro (fm) são calculadas conforme a ISO 266.

Eventuais resultados = 0,0 dB correspondem a indicações de, pelo menos. 10 dB abaixo do limite L_Sup correspondente.

As tolerâncias identificadas na(s) tabela(s) não contemplam as incertezas de medição. Estas podem e devem ser consideradas como parte do resultado para estabelecer um critério de aceitação.

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Filtros de terços de oitava de classe 1 / Base 2 (ta	abela 2/3)
--	------------

Lref	em	1000	Hz =	135	0 dB

Frequência	L_Sup	L_Inf	200	250	315	400	500	630	800	1000	1250	1600	2000	+1-U	k
fm x 0, 184	65,0	***	0.0	0.0	0,0	0,0	0,0	0,0	0,0	0.0	0.0	0,0	0,0	1,0	2,00
fm x 0,326	74,0		0,0	0,0	0,0	0,0	0.0	0.0	0.0	0,0	0,0	0.0	0.0	0,7	2.00
fm x 0,530	93.0		0,0	0,0	0,0	0,0	0,0	0,0	0.0	0.0	0,0	0.0	0,0	0,4	2,00
fm x 0,772	117,5	399	106,5	106,5	107,3	106,5	106,6	107,3	106,5	108,6	107.3	106.4	108.6	0.3	2,00
fm x 0,891	133,0	130,0	131,6	131,5	131,7	131,6	131,6	131,7	131,7	131,6	131,7	131,7	131,6	0.2	2.00
fm x 0,905	135,3	130,0	133,7	133,6	133,7	133,7	133,6	133,6	133,7	133,6	133.7	133.7	133.6	0,2	2,08
fm x 0,919	135,3	133,7	134,6	134,5	134,6	134,6	134,6	134,6	134,6	134,6	134.6	134.6	134,6	0.2	2,00
fm x 0,947	135,3	134,4	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135.0	0,2	2,00
fm x 0,974	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	135.0	135,0	135,0	135,0	135.0	0,2	2,00
fm	135,3	134,7	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135.0	135,0	135,0	0,2	2,00
fm x 1,027	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135.0	135.0	0,2	2,00
fm x 1,066	135,3	134,4	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0.2	2.00
fm x 1,088	135,3	133,7	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134.6	134,6	0,2	2,00
fm x 1,105	135,3	130,0	133,6	133,5	133,5	133,5	133,5	133,5	133,6	133,5	133,5	133,6	133,5	0.2	2,00
fm x 1,122	133,0	130,0	131,4	131,2	131,1	131,4	131,2	131,1	131,4	131,2	131.1	131.5	131,2	0.2	2,00
fm x 1,296	117,5	+++	104,6	103,6	102,3	104,7	103,6	102.3	104.7	103,6	102,3	104.7	103,6	0,3	2,00
fm x 1,887	93,0	***	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0.0	0,0	0,4	2,00
fm x 3,070	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0.0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 5,435	65.0		0.0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0.0	0.0	1.0	2.00

Filtros de terços de oitava de classe 1 / Base 2 (tabela 3/3)

	Lref em	1000	Hz=	135	0	dB
--	---------	------	-----	-----	---	----

							-									-
	Frequência	L_Sup	L_Inf	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000	3555	+/-U	k
	Tm x 0, 184	65.0	-	0,0	0,0	0.0	0,0	0,0	0.0	0,0	0.0	0,0	0.0		1,0	2.00
	fm x 0,326	74,0	222	0,0	0,0	0,0	0,0	0,0	0,0	0.0	0.0	0,0	66,4	-22	0,7	2,00
Ī	fm x 0,530	93,0	***	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0.0	0,0	88,3	966	0,4	2,00
	fm x 0,772	117,5		107,3	106,5	106,6	107,3	106,5	106,5	107,3	108.2	110.3	114,5		0,3	2,00
	fm x 0,891	133,0	130,0	131,7	131,7	131,6	131,7	131,6	131,5	131,7	131,7	131,5	131,9	-	0,2	2,00
	fm x 0,905	135,3	130,0	133,7	133,7	133,6	133,7	133,7	133,6	133,6	133,6	133,4	133,4	***	0,2	2,00
	fm x 0,919	135,3	133,7	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,5	134.4	134,3	494	0,2	2,00
	fm x 0,947	135,3	134,4	135,0	135,0	135,0	135,0	135,0	135,0	134,9	134,9	135,0	135,1	***	0,2	2,00
	fm x 0.974	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	135,0	134,9	135.0	135.2	C-175	0.2	2,00
	fm	135,3	134,7	135,0	135,0	135,0	135,0	135,0	135,0	134,9	135,0	135,0	135.2	***	0.2	2,06
	fm x 1,027	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	134,9	135,0	135,1	135.2	-	0,2	2,00
	fm x 1,056	135,3	134,4	135,0	135,0	135,0	135,0	135,0	134,9	134,9	135,0	135,1	135.2	-	0.2	2,00
	fm x 1,088	135,3	133,7	134,6	134,6	134,6	134,6	134,6	134,6	134,5	134,6	134,9	135,1	***	0.2	2,00
	fm x 1,105	135,3	130,0	133,5	133,6	133,5	133,5	133,6	133,5	133,4	133,4	134,3	134,6		0.2	2,00
	fm x 1,122	133.0	130,0	131,1	131,4	131,2	131,1	131,4	131,1	131,0	130,8	132.2	132,1	200	0.2	2.00
	fm x 1,296	117,5		102,3	104,7	103,6	102,3	104,6	103,6	102,3	0.0	0.0	0,0		0,3	2,00
	fm x 1,887	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0.0	0.0	0,0	0,0		0.4	2.00
	fm x 3,070	74.0	222	0,0	0,0	0,0	0,0	0.0	0,0	0,0	0.0	0,0	0.0		0,7	2,00
	fm x 5,435	65.0	100	0,0	0,0	0,0	0,0	55,9	59,1	0,0	0.0	0,0	56.0		1.0	2.00

Página Page 10

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

CRITÉRIOS DA NORMA IEC 61672-1:2013 PARA ESTABELECER A CONFORMIDADE DO SONÔMETRO:

A norma IEC 61672-1:2013 estabelece, para cada um dos testes, critérios de toleráncia e incertezas máximas que podem ser praticadas. Com relação às incertezas, o laboratório identifica antecipadamente se o critério de incertezas máximas é atendido e, portanto, não há necessidade, a priori, do cliente fazer esta comprovação. Para identificar se o sonômetro atende determinada tolerância a norma estabelece que os erros não devem exceder os limites de toleráncia definidos para o teste. Por exemplo, se uma determinada toleráncia for de 1 dB, os valores absolutos do erro não deverão exceder a 1 dB.

Observações adicionais sobre conformidade, exclusivas desta calibração:

A norma IEC 61672-3: 2013 è uma norma que foi criada no âmbito da metrologia legal em sua origem, e, por isso, estabelece frases obrigatórias de conformidade geral do equipamento na conclusão dos testes periódicos. Essas frases têm como objetivo determinar a conformidade do sonômetro à IEC 61672-1:2013, sendo que, para isso, segundo esta própria norma, além de ser aprovado nos testes periódicos da IEC 61672-3:2013, o sonômetro deve também ter tido o seu modelo aprovado pela IEC 61672-2;2013 por meio de uma organização independente, isto é, instituições que gozam de reconhecimento internacional para tal film. A tradução brasileira da parte 3 desta norma, a ABNT NBR IEC 61672-3:2018, por ser estritamente literal, também inclui tais frases.

No contexto brasileiro os testes periódicos da ABNT NBR IEC 61672-3:2018, como aqueles constantes neste certificado, são realizados, em geral. por laboratórios da Rede Brasileira de Calibração (RBC), no âmbito da metrologia científica. Se um ou mais testes apresentarem erros acima das tolerâncias especificadas na IEC 61672-1:2013, já constitui-se evidência suficiente da não conformidade do sonômetro á esta norma como um todo. Entretanto, se todos os testes apresentarem erros abaixo das toleráncias especificadas na IEC 61672-1:2013, a conformidade do sonômetro não pode ser formalmente assegurada pelo laboratório RBC, uma vez que este não possui prerrogativas legais para reconhecer uma suposta evidência de aprovação de modelo pela IEC 61672-2:2013, e portanto, não pode fazer afirmações categóricas a este respeito. Assim sendo, as frases obrigatórias da ABNT NBR IEC 61672-3:2018, referentes ao caso em que o sonômetro tenha sido aprovado em todos os seus testes periódicos, ficam sujeitas à evidência pública - seja do cliente, do fabricante ou de organização independente - quanto à aprovação de modelo segundo a IEC 61672-2:2013, ou ainda, à ausência desta

Portanto, caso haja evidência pública de aprovação de modelo pela IEC 61672-2:2013, aplica-se a seguinte conclusão normativa ao sonômetro submetido ao teste periódico:

"O sonômetro submetido ao teste completou com sucesso os testes periódicos da ABNT NBR IEC 61672-3:2018, para as condições ambientais em que os ensaios foram realizados. Como evidência estava publicamente disponível, a partir de uma organização de testes independente, responsável por aprovar os resultados dos testes de aprovação de modelo realizados de acordo com a IEC 61672-2:2013, para demonstrar que o modelo de sonômetro está completamente conforme os requisitos da classe X da IEC 61672-1.2013, o sonômetro submetido aos ensaios está em conformidade com os requisitos para classe X da IEC 61672-1:2013.*

Caso não haja evidência pública de aprovação de modelo pela IEC 61672-2:2013, aplica-se a seguinte conclusão normativa ao sonômetro submetido ao teste periódico:

"O sonômetro submetido ao teste completou com sucesso os testes periódicos da ABNT NBR IEC 61672-3:2018, para as condições ambientais em que os ensaios foram realizados. Entretanto, nenhuma declaração geral ou conclusão pode ser feita a respeito da conformidade do sonómetro a todas as especificações da IEC 61672-1:2013, porque (a) nenhuma evidência estava publicamente disponível, a partir de uma organização independente de testes responsável pela aprovação de modelo, para demonstrar que o modelo do sonômetro está completamente em conformidade com as especificações para a classe X da IEC 61672-1:2013 ou que os dados de correção para o teste acústico de ponderação em frequência não foram forecidos no manual de instrução e (b) porque os testes periódicos da ABNT NBR IEC 61672-3:2018 cobrem apenas um conjunto limitado de especificações da IEC 61672-1:2013."

Observações	adicionais	exclusivas	desta	calibração;	(
-------------	------------	------------	-------	-------------	---	--

(fim do resultados)

Opiniões e interpretações (não fazem parte do escopo de acreditação)

RBC - Rede Brasileira de Calibração

Certificado de Calibração

Certificate of Calibration

Certificado Nº: 132.088

Página 1 de 3

Laboratório de Eletro-Acústico

Dados do Cliente:

Nome:

Sonora Ambiental Projetos Ambientais e Educacionais Ltda

Endereço:

Rua das Figueiras, 07

Cidade:

Brasilia

Estado:

DF 71906-750

CEP: Nº de Processo: 48093 Data da Calibração:

08/02/22

Data da Emissão:

08/02/22

Marca:

Microfone Capacitivo

01 dB

Modelo:

MCE212

Nº de Série: 103461 Tensão de Polarização: 0V

№ de Identificação: Diâmetro: 1/2

Não consta polegada

Sensibilidade Nominal 50,00 mV/Pa ref 250 Hz

Procedimento Utilizado:

O procedimento operacional de calibração PRO - MIC -2000 rev.05

Norma de Referência: IEC 61094-6 de 2004

Padrões Utilizados:

Nome	№ Identificação	Nº Certificado	Rastreabilidade	Data de Validade
Gerador de Funções	TAG 0053	RBC-18/0602	RBC	19/10/23
Multimetro	TAG 0444	RBC-19/0409	RBC	18/06/22
Fonte	TAG 0011	170 574-101	RBC	13/01/23
Atuador 1/2" Polegada	TAG 0059	DIMCI 0336/2019	INMETRO	25/02/22
Fonte	TAG 223 (2)	DIMCI 0336/2019	INMETRO	25/02/22
Microfone	TAG 0222	DIMCI 0194/2017	INMETRO	09/02/22
Pistonfone	TAG 0106	DIMCI 0335/2019	INMETRO	19/02/22
Barômetro	TAG 0273	121.171	RBC	09/02/22
Termo-Higrômetro	TAG 0273(2)	122.242	RBC	09/02/22

LABORATORIO DE CALIBRAÇÃO ACREDITADO PELA OGORE DE ACORDO COMICABINT MBR. ISOREC 17025 808 O NÚMERO 256

Chorryceix Inst. Clemif. Lida Av. Eng ^a Saraiva de Cliveira, 405 - 05741-200 - Jz. Tabodo - Silo Pedo - SP - Breal Pone: 55 11 3384-9320 - www.chrumpath.com.br

Certificado de Calibração Certificate of Calibration

Certificado Nº: 132.088

Página 2 de 3

Resultados Obtidos:

Os resultados apresentados a seguir associados as suas incertezas de medições expandidas tem como finalidade demonstrar a sensibilidade do microfone calibrado em três diferentes vertentes:

Resposta em função da frequência pelo método do atuador eletrostático específicado pela norma internacional IEC 61094-6 "Electrostatic actuators for determination of frequency response", a Sensibilidade em mV/Pa ref. 250 Hz (milivolt por Pascal) e a Sensibilidade em dB ref 1V/Pa obtidas pelo método comparativo ao microfone padrão laboratorial utilizado como referência.

FE (Hz)	Resp. Frequência (dB) re. 250 Hz	Sensibilidade mV/Pa re. 250 Hz	Sensibilidade dB re. 1 V/Pa	k	U95,45 (d8)
25,12	-0,29	47,25	-26,51	2,01	0,30
31,62	-0,20	47,77	-26,42	2,00	0,28
39,81	-0,19	47,81	-26,41	2,02	0,30
50,12	-0,14	48,10	-26,36	2,02	0,30
63,10	-0,08	48,41	-26,30	2,02	0,30
79,43	-0,08	48,43	-26,30	2,01	0,29
100,0	-0,07	48,50	-26,28	2,02	0,29
125,9	-0,07	48,50	-26,28	2,02	0,30
158,5	-0,05	48,56	-26,27	2,01	0,29
199,5	-0,05	48,58	-26,27	2,01	0,29
251,2	0,00	48,87	-26,22	2,00	0,17
316,2	-0,01	48,83	-26,23	2,00	0,17
398,1	-0,01	48,81	-26,23	2,00	0,17
501,2	-0,02	48,77	-26,24	2,00	0,17
631,0	-0,03	48,68	-26,25	2,00	0,17
794,3	-0,05	48,60	-26,27	2,00	0,17
1000	-0,09	48,35	-26,31	2,00	0,17
1259	-0,12	48,18	-26,34	2,00	0,17
1585	-0,22	47,66	-26,44	2,00	0,19
1995	-0,33	47,04	-26,55	2,00	0,19
2512	-0,52	46,04	-26,74	2,01	0,20
3162	-0,78	44,65	-27,00	2,01	0,20
3981	-1,06	43,26	-27,28	2,00	0,19
5012	-1,58	40,72	-27,80	2,00	0,19
6310	-2,18	38,04	-28,39	2,00	0,21
7943	-3,09	34,25	-29,31	2,00	0,33
10000	-4,32	29,72	-30,54	2,00	0,38
12590	-5,61	25,62	-31,83	2,02	0,45
15850	-7,15	21,46	-33,37	2,00	0,41
19950	-9,09	17,16	-35,31	2,00	0,48

Av. Engº Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATORIO DE CALIBRAÇÃO ACREDITADO PILA ÓSCREDE ACORDO COM A ABINT NBR. ISQUEC 17038, SOB O NOVERO 256

Certificado de Calibração Certificate of Calibration

Certificado Nº: 132.088

Página 3 de 3

Observações:

- ☑ Condições ambientais: Temperatura: 25°C Umidade relativa media: 50% Pressão atmosférica: 930mbar
- Anotação de Responsabilidade Técnica ART 28027230200540653 / CREA-SP.
- ☑ Certificado Assinado Eletronicamente
- Responsável pela Calibração: Ramon Marra

Signatário autorizado:

Alexandre Fascina

Av. Eng" Saraiva de Oliveira, 485 - 06741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA COCRE DE ACORDO COMA ABRIT NBRI ISONEC 17925 SOBIQ NÚMERO 258.

62

Desde 1996

RBC - Rede Brasileira de Calibração

Certificado de Calibração

Certificate of Calibration

Certificado Nº: 138.681

Página 1 de 3

Laboratório de Acústica

Dados do Cliente:

Nome:

Sérgio Luiz Garavelli

Endereço: Cidade:

Rua 4, Lote 10 Águas Claras

Estado:

Nº de Processo:

71937-000

50585

Data da Calibração: Data da Emissão:

23/09/2022

23/09/2022

Características do microfone calibrado:

Nome: Marca:

Nº de Série:

Microfone Capacitivo

GRAS 259694 Modelo:

Nº de Identificação: Diâmetro:

Não consta 1/2 Polegada

40CE

Sensibilidade Nominal: 50 mV/Pa ref 250 Hz

Procedimento Utilizado:

Tensão de Polarização:

O procedimento operacional de calibração PRO - MIC -2000 rev.05

OV.

Norma de Referência: IEC 61094-6 de 2004

Padrões Utilizados:

Nome	Nº Identificação	N° Certificado	Rastreabilidade	Data de Validado
Gerador de Funções	TAG 0053	RBC-18/0602	RBC	19/10/2023
Multimetro	TAG 0444	RBC-19/0409	RBC	18/06/2023
Fonte	TAG 0011	170 574-101	RBC	13/01/2023
Atuador 1/2" Polegada	TAG 0059	DIMCI 0336/2019	INMETRO	25/02/2023
Fonte	TAG 223 (2)	DIMCI 0336/2019	INMETRO	25/02/2023
Microfone	TAG 0478	DIMCI 1338/2021	INMETRO	08/12/2024
Pistonfone	TAG 0106	DIMCI 0335/2019	INMETRO	19/02/2023
Termo-Higrômetro	TAG 0273	132.030	RBC	07/02/2023
Barômetro	TAG 0273(2)	135.276	RBC	07/02/2023

LABORATORIO DE CALIBRAÇÃO ACREDITADO PELA COCRE DE ACORDO COM A ABINT NBR. (BOJEC 17025 BDB O NÚMERO 256

Chrompack Inst. Clerett Ltds Av. Eng.* Sansiva de Oliveire, 468 - 05741-200 - 25. Tabodo - 58o Pauli - 5P - Steel Fore: 55.11.3384-8320 - www.chrumpack.com.br

Certificado de Calibração Certificate of Calibration

Certificado Nº: 138.681

Página 2 de 3

Resultados Obtidos:

Os resultados apresentados a seguir associados as suas incertezas de medições expandidas tem como finalidade demonstrar a sensibilidade do microfone calibrado em três diferentes vertentes: Resposta em função da frequência pelo método do atuador eletrostático especificado pela norma internacional IEC 61094-6 "Electrostatic actuators for determination of frequency response", a Sensibilidade em mV/Pa ref. 250 Hz (milivolt por Pascal) e a Sensibilidade em dB ref 1V/Pa obtidas pelo método comparativo ao microfone padrão laboratorial utilizado como referência.

PE DIAL	Resp. Frequência (dB)	Sensibilidade	Sensibilidade	k	U95,45 (dB
FE (Hz)	re. 250 Hz	mV/Pa re. 250 Hz	dB re. 1 V/Pa		093,43 (46
25,12	-0,23	39,85	-27,99	2,00	0,29
31,62	-0,20	39,99	-27,96	2,00	0,27
39,81	-0,02	40,79	-27,79	2,01	0,29
50,12	-0,03	40,75	-27,80	2,00	0,27
63,1	-0,01	40,83	-27,78	2,00	0,27
79,43	0,01	40,94	-27,76	2,00	0,27
100	0,01	40,95	-27,76	2,00	0,27
125,9	0,01	40,95	-27,75	2,00	0,27
158,5	0,00	40,91	-27,76	2,00	0,27
199,5	0,01	40,95	-27,76	2,00	0,27
251,2	0,00	40,90	-27,77	2,00	0,17
316,2	0,00	40,91	-27,76	2,00	0,17
398,1	0,00	40,90	-27,77	2,00	0,17
501,2	-0,01	40,83	-27,78	2,00	0,17
631	-0,03	40,76	-27,80	2,00	0,17
794,3	-0,06	40,61	-27,83	2,00	0,17
1000	-0,07	40,59	-27,83	2,00	0,17
1259	-0,10	40,42	-27,87	2,00	0,17
1585	-0,20	39,98	-27,96	2,00	0,19
1995	-0,28	39,59	-28,05	2,00	0,19
2512	-0,46	38,81	-28,22	2,00	0,19
3162	-0,69	37,78	-28,45	2,00	0,19
3981	-1,03	36,35	-28,79	2,00	0,19
5012	-1,46	34,58	-29,22	2,00	0,19
6310	-2,03	32,37	-29,80	2,00	0,21
7943	-2,80	29,62	-30,57	2,00	0,32
10000	-3,88	26,15	-31,65	2,00	0,36
12590	-5,11	22,72	-32,87	2,00	0,41
15850	-6,31	19,79	-34,07	2,00	0,43
19950	-7.94	16,40	-35,70	2,00	0,48

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATÓRIO DE CALIBRAÇÃO AOREDITADO PELA COCRE DE ACORDO COMINABRIT NEM, INDIREC 17025 506 O NÚMERO 259

Certificado de Calibração

Certificado Nº: 138.681

Página 3 de 3

Observações:

☑ Condições ambientais: Temperatura: 23°C

Umidade relativa medida: 51 %UR Pressão atmosférica: 928 hPa

☑ Anotação de Responsabilidade Técnica – ART 28027230220241436 / CREA-5P.

Responsável pela calibração e signatário autorizado:

Av. Eng. Saraiva de Otiveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA COCHE DE ACORDO COM A ABNIT NBR. IBOREC 17035-808 O NÚMERO 294

Desde 1996

RBC - Rede Brasileira de Calibração

Certificado de Calibração

Certificate of Calibration

Certificado Nº: 131.968

Página 1 de 8

Laboratório de Acústica

Dados do Cliente:

Nome:

Sonora Ambiental Projetos Ambientais e Educacionais Ltda

Endereço:

Rua das Figueiras, 07

Cidade:

Brasilia DF

Estado: CEP:

71906-750

Dados do Instrumento Calibrado:

Nome: Marca: Medidor de Nível Sonoro 01 dB

Salo

Modelo:

Nº de Série:

Nº de Patrimônio:

20138 Não consta

Nº de Identificação:

Nº de Processo: Data da Calibração: Data da Emissão:

03/02/22 03/02/22

Não consta

48093

Procedimento Utilizado:

O procedimento operacional de calibração PRO - MNS - 1000 rev.08

Norma de Referência:

IEC 60651: 2001

Padrões Utilizados:

Nome	Nº Identificação	Nº Certificado	Rastreabilidade	Data de Validade
Gerador de Funções	TAG 0053	RBC-18/0602	RBC	19/10/23
Calibrador Eletro-Acústico	TAG 0042	DIMCI 0209/2020	INMETRO	28/02/23
Barômetro	TAG 0273	121.171	RBC	08/02/22
Termo-Higrômetro	TAG 0273(2)	122.242	RBC	09/02/22

LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA COCRE DE ACORDO COM A ANVINER: (ROVEC 17025-808 O NÚMERO 29)

As. Eng * Serains de Otiveire, 465 - 95741-200 - Jrl. Tabolio - São Paulo - BP - Breall Fame: 55 11 3364-6320 - www.shvorspack.com.br

Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.968

Página 2 de 8

Ponderação em frequência:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz

Nível de referência: 94,0 d8

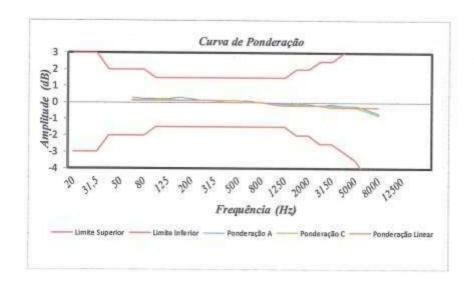
Faixa de nível de referência: 20 dB a 137 dB

Parâmetro: dB (A) Slow

Frequência nominal (Hz)	Frequência exata (Hz)	Ponderação A Desvio indicado (dB)	Ponderação C Desvio Indicado (dB)	Resposta Linear Desvio indicado (dB)	Toleråncia em d8
63	63,10	0,3	0,2	0,1	±2
80	79,43	0,2	0,1	0,1	±2
100	100,0	0,2	0,2	0,1	± 1,5
125	125,9	0,2	0,2	0,1	± 1,5
160	158,5	0,3	0,1	0,1	± 1,5
200	199,5	0,2	0,1	0,1	± 1,5
250	251,2	0,1	0,1	0,1	± 1,5
315	316,2	0,1	0,1	0,1	± 1,5
400	398,1	0,1	0,1	0,0	± 1,5
500	501,2	0,1	0,1	0,0	± 1,5
630	631,0	0,1	0,0	0,0	± 1,5
800	794,3	0,0	0,0	0,0	± 1,5
1000	1000	0,0	-0,1	-0,1	±1,5
1250	1259	-0,1	-0,2	-0,2	± 1,5
1600	1585	-0,1	-0,1	-0,2	±2
2000	1995	-0,1	-0,2	-0,2	±2
2500	2512	-0,2	-0,2	-0,2	± 2,5
3150	3162	-0,1	-0,3	-0,2	± 2,5
4000	3981	-0,2	-0,3	-0,3	±3
5000	5012	-0,2	-0,3	-0,3	± 3,5
6300	6310	-0,4	-0,5	-0,3	+4,5;-4,5
8000	7943	-0,7	-0,8	-0,3	+5; -5

Av. Eng" Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATÓRIO DE CALISRAÇÃO ACREDITADO PELA COCRE DE ACORDO COM AABIVEMBR. REDIEC 17025-308 O NÚMERO 258



Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.968

Gráfico das Ponderações em Frequência:

Página 3 de 8

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Tabolio - São Paulo - SP - Brasil
Fone: 55 11 3384-9329 - www.chrompack.com.br

LABORATÓRIO DE CALBRAÇÃO ACREDITADO PELA COCRE DE ACORDO COMA ABRIT MBR. 60-950 1705 808 0 NUMERO 388

Desde 1996

Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.968

Página 4 de 8

Linearidade:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nivel de referência: 94,0 dB

Faixa de nivel de referência: 20 dB a 137 dB Parâmetro medido; dB (A) Slow

Faixa de nível (dB)	Nível esperado (dB)	Desvio Indicado (dB)	Toleránci (±dB)
20 dB a 137 dB	137,0	0,0	
20 dB a 137 dB	127,0	0,0	
20 dB a 137 dB	117,0	0,0	
20 dB a 137 dB	107,0	-0,1	
20 dB a 137 dB	97,0	0,0	
20 dB a 137 dB	87,0	0,0	1,5
20 d8 a 137 d8	77,0	0,0	100000
20 dB a 137 dB	67,0	0,0	
20 dB a 137 dB	57,0	0,0	
20 dB a 137 dB	47,0	0,1	
20 d8 a 137 dB	38,0	8,0	

Av. Eng" Saraiva de Oliveira, 485 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATÓRIO DE CAUBRAÇÃO ACREDITADO PELA COCRE DE ACORDO COM A ABRIT NOR. ISOTEC:17635. SOB O NOMERO 256

Certificado de Calibração

Certificado Nº: 131.968

Página 5 de 8

Detector RMS:

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB

Falxa de nivel de referência: 20 dB a 137 dB Parâmetro medido: dB (Z) Slow

Sinal	Nível indicado (d8)	Desvio Indicado (dB)	Faixa de nivel (dB)	Tolerância em dB
Seno (FC=3)	93,7	-0,3	20 dB a 137 dB	± 1,0
Seno (FC=5)	93,7	-0,3	20 dB a 137 dB	± 1,0
Quadrado (FC=-3)	93,6	-0,4	20 dB a 137 dB	±1,0
Quadrado (FC=+3)	93,6	-0,4	20 dB a 137 dB	±1,0
Quadrado (FC=-5)	93,6	-0,4	20 dB a 137 dB	±1,0
Quadrado (FC=+5)	93,6	-0,4	20 dB a 137 dB	±1,0

Ponderação Temporal:

Configuração do Instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 500 ms Parâmetro medido: dB (2) Slow (max)

Faixa de nível (dB)	Nível esperado (dB)	Desvia (dB)	Tolerância em d8
20 dB a 137 dB	128,9	-0,2	
20 dB a 137 dB	118,9	-0,2	
20 dB a 137 dB	108,9	-0,3	Oliver and Miles
20 dB a 137 dB	98,9	-0,3	± 2,0
20 d8 a 137 d8	88,9	-0,2	200,000
20 dB a 137 dB	78,9	-0.2	

Av. Eng" Seraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATORIO DE CALIBRAÇÃO ACREDITADO PELA DISCHE DE ACOMDO COM A ABRIT INBR. ISO/ISO 17025 SOB O NÚMERO 250

Certificado Nº: 131.968

Página 6 de 8

Ponderação temporal (continuação):

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 200 ms Parâmetro medido: dB (Z) Fast (max)

Tolerância em d	Desvio (d8)	Nível esperado (dB)	Faixa de nível (dB)
	-0,5	132,0	20 dB a 137 dB
	-0,5	122,0	20 dB a 137 dB
	-0,5	112,0	20 dB a 137 dB
+1,0 / -2,0	-0,3	102,0	20 dB a 137 dB
	-0,5	92,0	20 dB a 137 dB
	-0,3	82,0	20 dB a 137 dB

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nivel de referência: 94,0 dB

Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 20 ms Parâmetro medido: dB (Z) Impulse (max)

Faixa de nível (dB)	Nível esperado (dB)	Desvio (dB)	Tolerância em di
20 dB a 137 dB	133,4	-0,3	
20 dB a 137 dB	123,4	-0,5	
20 dB a 137 dB	113,4	-0,4	
20 dB a 137 dB	103,4	-0,4	± 2,0
20 dB a 137 dB	93,4	-0,5	1.50
20 dB a 137 dB	83,4	-0,4	100

Av. Eng" Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompeck.com.br LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA COCRE DE ACORDO COM A ABAT HBR. (EQUEC 17935 SOB O AGMERO 256

Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.968

Página 7 de 8

Ponderação temporal (continuação):

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nivel de referência: 94,0 dB

Faixa de nível de referência: 20 d8 a 137 dB Duração do trem de tons de teste 5 ms Parâmetro medido: dB (Z) Impulse (max)

Faixa de nível (dB)	Nivel esperado (dB)	Desvio (dB)	Tolerância em dE
20 dB a 137 dB	128,2	-0,2	
20 dB a 137 dB	118,2	-0,4	
20 dB a 137 dB	108,2	-0,7	
20 dB a 137 dB	98,2	-0,3	±3,0
20 dB a 137 dB	88,2	-0,7	
20 dB a 137 dB	78,2	-0,5	

Av. Eng" Saratya de Oliveira, 465 - 05741-200 - Jd. Tabolio - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA CIGORE DE ACORDO COMA ABRIT HBR. ISQUEC 17905. SOB O NUMERO SIN

Certificate of Calibration

Certificado Nº: 131.968

Página 8 de 8

Método de Medição:

Os resultados foram obtidos através da aplicação de sinais elétricos, substituindo o microfone por adaptador com capacitância equivalente, os sinais são especificados pela norma IEC 60651 de modo a satisfazer os testes descritos como ponderação em frequência, linearidade, detector RMS e ponderação temporal.

Observações:

☑ Condições ambientais:

Temperatura: 26°C

Umidade relativa media: 50%

Pressão atmosférica: 930mbar

- A incerteza de medição elétrica não excede a ± 0,2 dB.
- Desvio: diferença entre o nível indicado e nível esperado.
- ☑ Fator de abrangência k≈2.
- ☑ Anotação de Responsabilidade Técnica ART 28027230200540653 / CREA-SP.
- O microfone que acompanha o Medidor de Nivel Sonoro não é passível de calibração.
- ☑ Certificado Assinado Eletronicamente.
- Responsável Pela Calibração: Ramon Marra

Declaração de conformidade dos resultados obtidos em relação as toleráncias da norma IEC 60651

1. Ponderação em Frequência A	Em acordo	3. Detector RMS - Onda Quadrada FC: -5	Em acordo
 Ponderação em Frequência C 	Em acordo	3. Detector RMS - Onda Quadrada FC: +3	Em acordo
 Ponderação em Frequência Z ou L 	Em acordo	3. Detector RMS - Onda Quadrada FC: +5	Em acordo
2. Linearidade	Em acordo	4. Ponderação Temporal Slow	Em acordo
3. Detector RM5 - Onda Senoidal FC: 3	Em acordo	4. Ponderação Temporal Fast	Em acordo
3. Detector RMS - Onda Senoidal FC: 5	Em acordo	4. Ponderação Temporal Impulse	Em acordo
3. Detector RMS - Onda Quadrada FC: -3	Em acordo		

Signatário autorizado

Alexandre Fascina

Av. Eng" Saratva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORAZIÓNIO DE CALIBRAÇÃO ACREDITADO PELA COCRE DE ACORDO COM A ABHT NOR ISONEC 17625, SOB O NÚMBRO 366

Desde 1996

RBC - Rede Brasileira de Calibração

Certificado de Calibração

Certificate of Calibration

Certificado Nº: 131.969

Página 1 de 8

Laboratório de Acústica

Dados do Cliente:

Nome:

Sonora Ambiental Projetos Ambientais e Educacionais Ltda

Endereço:

Rua das Figueiras, 07 Brasilia.

Cidade: Estado:

DF

CEP:

71906-750

Dados do Instrumento Calibrado:

Nome: Marca: Medidor de Nivel Sonoro

01 dB

Solo

Modelo:

N° de Série:

Nº de Patrimônio:

65236 Não consta Tipo:

Nº de Identificação:

Nº de Processo:

Data da Calibração: Data da Emissão:

Não consta 48093 03/02/22 03/02/22

Procedimento Utilizado:

O procedimento operacional de calibração PRO - MNS - 1000 rev.08

Norma de Referência:

IEC 60651: 2001

Padrões Utilizados:

Nome	Nº Identificação	N° Certificado	Rastreabilidade	Data de Validade
Gerador de Funções	TAG 0053	RBC-18/0602	RBC	19/10/23
Calibrador Eletro-Acústico	TAG 0042	DIMCI 0209/2020	INMETRO	28/02/23
Barômetro	TAG 0273	121.171	RBC	08/02/22
Termo-Higrômetro	TAG 0273(2)	122.242	RBC	09/02/22

LABORATÓRIO DE CALBRAÇÃO AGREDITADO PELA DOCRE DE ACORDO COM A ABINT NEIR ISQUES 17025 SOBIO NÚMERO 250

Av. Eng * Seraiva de Céveira, 465 - 05741-302 - Jd. Tebulio - Sito Peuto - SP - Brasil Pone: 85 11 3364-9320 - www.chrompack.com.te

Desde 1996

Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.969

Página 2 de 8

Ponderação em frequência:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 94,0 dB

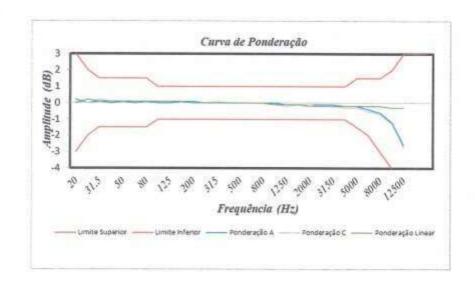
Faixa de nível de referência: 20 dB a 137 dB

Parâmetro: dB (A) Slow

Frequência nominal (Hz)	Frequência exata (Hz)	Ponderação A Desvio indicado (dB)	Ponderação C Desvio indicado (dB)	Resposta Linear Desvio indicado (dB)	Tolerånci em dB
20	19,95	0,2	0,1	0,0	PES
25	25,12	0,0	0,0	0,0	±3
31,5	31,62	0,1	0,2	535.05	±2
40	39,81	0,0	0,1	0,1	± 1,5
50	50,12	0,1	0,1	0,1 0,1	± 1,5
63	63,10	0,0	0,1	1075101	± 1,5
80	79,43	0,1	0,1	0,1	± 1,5
100	100,0	0,0	0,1	0,1	± 1,5
125	125,9	0,0	0,1	0,1	±1
160	158,5	0,1	0,1	0,1	±1
200	199,5	0,1	0.00	0,1	±1
250	251,2	0,0	0,0	0,0	±1
315	316,2	0,0	0,0	0,0	±1
400	398,1	0,0	0,1	0,0	±1
500	501,2	0,0	0,0	0,0	± 1
630	631,0	110000000000000000000000000000000000000	0,0	0,0	±1
800	794,3	0,0	0,0	0,0	±1
1000	1000	0,0	0,0	0,0	±1
1250	1259	0,0	-0,1	-0,1	±1
1600	1585	-0,1	-0,2	-0,1	± 1
2000	1995	-0,1	-0,1	-0,1	±1
2500	99999	-0,1	-0,1	-0,2	±1
3150	2512	-0,1	-0,2	-0,2	±1
4000	3162	-0,1	-0,2	-0,2	±1
2012/03/03/03/04	3981	-0,2	-0,3	-0,2	±1
5000	5012	-0,2	-0,3	-0,2	±1,5
6300	6310	-0,4	-0,5	-0,2	+1,5;-2
8000 10000	7943	-0,6	-0,7	-0,2	+1,5; -3
12500	10000	-1,2	-1,3	-0,3	+ 2; -4
12500	12590	-2,6	-2,7	-0,3	+3;-6

Av. Eng" Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA DISCRESIE ACORDO COM A ABINTINBR: REQUISO 17025. SOB O NÚMERO 259



Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.969

Gráfico das Ponderações em Frequência:

Página 3 de 8

Av. Eng" Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br LABORATORIO DE CALBRAÇÃO ADREDITADO PELA COCRE DE ACORDO COMA ABINT NBR. ISONEC 17665. SOB O NÚMERO 386

Desde 1996

Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.969

Página 4 de 8

Linearidade:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nivel de referência: 94,0 dB

Faixa de nível de referência: 20 dB a 137 dB Parâmetro medido: dB (A) Slow

Faixa de nivel (dB)	Nível esperado (dB)	Desvio indicado (dB)	Tolerânci (±d8)
20 dB a 137 dB	137,0	0,0	
20 dB a 137 dB	127,0	0,0	
20 dB a 137 dB	117,0	0,0	
20 dB a 137 dB	107,0	0,0	
20 dB a 137 dB	97,0	0,0	
20 dB a 137 dB	87,0	-0,1	15.00
20 d8 a 137 d8	77,0	0,0	1,0
20 dB a 137 dB	67,0	0,0	
20 d8 a 137 d8	57,0	-0,1	
20 dB a 137 dB	47,0	0,0	
20 dB a 137 dB	37,0	0,2	10
20 dB a 137 dB	31,0	8,0	100

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA COGRE DE ACORDO CON A ABRIT 1989 I SIDIEC 17525 SOS O NÚMERO 255

Certificate of Calibration

Certificado Nº: 131.969

Página 5 de 8

Detector RMS:

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 20 dB a 137 dB Parâmetro medido: dB (Z) Slow

Sinal	Nível Indicado (dB)	Desvio indicado (dB)	Faixa de nivel (dB)	Tolerâncii em dB
Seno (FC=3)	93,9	-0,1	20 dB a 137 dB	± 0,5
Seno (FC=5)	93,9	-0,1	20 dB a 137 dB	±1,0
Seno (FC=10)	94,0	0,0	20 dB a 137 dB	±1,5
Quadrado (FC=-3)	93,9	-0,1	20 dB a 137 dB	± 0,5
Quadrado (FC=+3)	93,9	-0,1	20 dB a 137 dB	± 0,5
Quadrado (FC=-5)	93,8	-0,2	20 dB a 137 dB	±1,0
Quadrado (FC=+5)	93,8	-0,2	20 dB a 137 dB	±1,0
Quadrado (FC=-10)	93,8	-0,2	20 dB a 137 dB	± 1,5
Quadrado (FC=+10)	93,9	-0,1	20 dB a 137 dB	± 1,5

Ponderação Temporal:

Configuração do Instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 500 ms Parâmetro medido: dB (Z) Slow (max)

Faixa de nivel (dB)	Nivel esperado (dB)	Desvio (dB)	Tolerância em dB
20 dB a 137 dB	128,9	0,0	
20 dB a 137 dB	118,9	-0,1	
20 dB a 137 dB	108,9	0,0	
20 dB a 137 dB	98,9	0,0	±1,0
20 dB a 137 dB	88,9	0,0	
20 dB a 137 dB	78,9	0,1	

Av. Eng" Sarsiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fene: 55.11.3384-9320 - www.chrompack.com.br

LABORATORIO DE CALBRAÇÃO ACREDITADO PELA COCRE DE ACORDO COM A ABRIT MBR. (SOREO 17025 SOB O NÚMERO 286

Certificado Nº: 131.969

Página 6 de 8

Ponderação temporal (continuação):

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB

Faixa de nivel de referência: 20 dB a 137 dB Duração do trem de tons de teste 200 ms Parâmetro medido: dB (Z) Fast (max)

Faixa de nível (dB)	Nivel esperado (dB)	Desvio (dB)	Tolerância em di
20 dB a 137 dB	132,0	-0.1	
20 dB a 137 dB	122,0	-0,3	1
20 dB a 137 dB	112,0	-0,1	
20 dB a 137 dB	102,0	0,0	+1,0 / -1,0
20 dB a 137 dB	92,0	-0,3	
20 dB a 137 dB	82,0	-0.2	

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 20 ms Parâmetro medido: dB (Z) Impulse (max)

Faixa de nível (d8)	Nível esperado (dB)	Desvio (d8)	Tolerância em di
20 dB a 137 dB	133,4	-0,1	
20 dB a 137 dB	123,4	-0,2	
20 dB a 137 dB	113,4	-0,2	
20 dB a 137 dB	103,4	-0,1	± 1,5
20 dB a 137 dB	93,4	-0,3	
20 dB a 137 dB	83,4	-0.2	

Av. Eng* Seraiva de Oliveira, 465 - 05741-200 - Jd. Tebolio - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATÓRIO DE CALISHAÇÃO ACREDITADO PELA COCRE DE ACORDO COM A ABRIT HER! ISÓXEC 17925 508 O MÚMERO 256

Certificate of Calibration

Certificado Nº: 131.969

Página 7 de 8

Ponderação temporal (continuação):

Configuração do Instrumento sob medição: Frequência de referência: 2000 Hz Nivel de referência: 94,0 dB

Faixa de nivel de referência: 20 dB a 137 dB Duração do trem de tons de teste 5 ms Parâmetro medido: dB (Z) impulse (max)

Faixa de nível (dB)	Nivel esperado (dB)	Desvio (dB)	Tolerância em dB
20 dB = 137 dB	128,2	-0,3	
20 dB a 137 dB	118,2	0,0	
20 dB a 137 dB	108,2	-0,1	
20 dB a 137 dB	98,2	-0,2	± 2,0
20 dB a 137 dB	88,2	-0,1	- 1
20 dB a 137 dB	78,2	-0,2	

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB Faixa de nível de referência; 20 dB a 137 dB Duração do trem de tons de teste 2 ms Parâmetro medido: dB (Z) Impulse (max)

Faixa de nivel (dB)	Nível esperado (dB)	Desvio (dB)	Tolerância em dê
20 dB a 137 dB	124,4	-0,1	8
20 dB a 137 dB	114,4	-0,2	
20 dB a 137 dB	104,4	-0,2	
20 dB a 137 dB	94,4	-0,2	± 2,0
20 dB a 137 dB	84,4	-0,2	300000
20 dB a 137 dB	74,4	-0,2	

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATÓRIO DE CALBRAÇÃO AGRECITADO PILA COCHE DE ACORDO COM A ABAT NER 180/IEC 17005-SOB O HÚMERO 288

Certificate of Calibration

Certificado Nº: 131.969

Desde 1996

Página 8 de 8

Método de Medição:

Os resultados foram obtidos através da aplicação de sinais elétricos, substituindo o microfone por adaptador com capacitância equivalente, os sinais são especificados pela norma IEC 60651 de modo a satisfazer os testes descritos como ponderação em frequência, linearidade, detector RMS e ponderação temporal.

Observações:

☑ Condições ambientals:

Temperatura: 26°C

Umidade relativa media: 50%

Pressão atmosférica: 930mbar

- A incerteza de medição elétrica não excede a ± 0,2 dB.
- Desvio: diferença entre o nível indicado e nível esperado.
- ☑ Fator de abrangência k=2.
- Anotação de Responsabilidade Técnica ART 28027230200540653 / CREA-SP.
- O microfone número de série: 103461 que acompanha o Medidor de Nível Sonoro foi calibrado separadamente.
- Certificado Assinado Eletronicamente.
- Responsável Pela Calibração: Ramon Marra

Declaração de conformidade dos resultados obtidos em relação as tolerâncias da norma IEC 60651

Ponderação em Frequência A	Em acordo	3. Detector RMS - Onda Quadrada FC: -5	Em acordo
 Ponderação em Frequência C 	Em acordo	3. Detector RMS - Onda Quadrada FC: -10	Em acordo
 Ponderação em Frequência Z ou L 	Em acordo	3. Detector RMS - Onda Quadrada FC: +3	Em acordo
2. Linearidade	Em acordo	3. Detector RMS - Onda Quadrada FC: +5	(7) (1) (1) (1) (1) (1) (1)
3. Detector RMS - Onda Senoidal FC: 3	Em acordo	3. Detector RM5 - Onda Quadrada FC: +10	Em acordo
3. Detector RMS - Onda Senoidal FC: 5	Em acordo	Ponderação Temporal Slow	Em acordo
3. Detector RMS - Onda Senoidal FC: 10	Em acordo		Em acordo
3. Detector RM5 - Onda Quadrada FC: -3		4. Ponderação Temporal Fast	Em acordo
s, percesos umo - Orine Chadridge LC -3	Em acordo	4. Ponderação Temporal Impulse	Em acordo

Signatário autorizado

Alexandre Fascina

Av. Eng" Seratva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Bresil Fone: 55 11 3384-9320 - www.chrompack.com.br

LABORATORIO DE CALIBRAÇÃO ADREDITADO PILA COCRE DE ACORDO COMIA ASINT NEM ISOSED 17025 SIDE O NÚMERO 250

Anexo 3 – Atestado de Responsabilidade Técnica (ART)

25/08/22, 15:36

https://art.creadf.org.br/art1025/funcces/form_impressac_fos.php7NUMERO_DA_ART=0720220070226

Anotação de Responsabilidade Tecruca - ART Lei nº 6 496, de 7 de dezembro de 1977

CREA-DF

ART Obra ou serviço 0720220070226

Conselho Regional de Engenharia e Agronomia do Distrito Federal

EDSON BENICIO DE CARVALHO JUNIOR

Titulo profissional: Engenheiro Civil

E-Mail: RRibeiro@aenabrasil.com.br

RNP: 0720365325 Registro: 31125/D-DF

Empresa contratada: SONORA AMBIENTAL PROJETOS AMBIENTAIS E EDUCÁCIONAIS LTDA Registro: 15347-DF

2. Dados do Contrato-

Contratante: AEROPORTOS DO NORDESTE DO BRASIL S.A

CNPJ: 33,919.741/0001-20

Rua Barão de Souza Leão Bairro: Boa Viagem Número: 425 Complemento: Sala 1901 Cidade: Recife UF: PE

Fone: (83)33325044

Valor Obra/Serviço R\$: 788.800,00

CEP: 51030-300

Celebrado em: 15/07/2022

Tipo de contratante: Pessoa Jurídica de Direito Privado

Ação institucional: Nenhuma/Não Aplicável

3. Dados da Obra/Serviço

Vinculada a ART:

Data de Início das Atividades do Profissional: 15/07/2022

Data de Fim das Atividades do Profissional: 15/07/2023

Coordenadas Geográficas: -8.1318203,-34.9060681 Código/Obra pública: CNPJ: 33.919.741/0001-20

Finalidade: Ambiental Proprietário: AEROPORTOS DO NORDESTE DO BRASIL S.A

E-Mail: RRibeiro@aenabrasil.com.br

Fone: (83) 33325044

1º Endereço

Rua Barão de Souza Leão

Número: 425

Bairro: Boa Viagem CEP: 51030-300 Complemento: Sala 1901 Cidade: Recife - PE

4. Atividade Técnica-

Consultoria

Ouantidade Unidade

Consultoria de impacto ambiental

1,0000 unidade

A ART é válida somente quando quitada, mediante apresentação do comprovante de pagamento ou conferência no site do Crea.
 A autenticidade deste documento pode ser verificada no site www.creadf.org.br

Após a conclusão das atividades técnicas o profissional deverá proceder à baixa desta ART.

Observacões

Monitoramento do ruido aeronáutico e emissões atmosféricas: Aeroporto Internacional do Recife/Guararapes, Aeroporto Internacional de Maceió, Aeroporto Internacional de Aracaju, Aeroporto de Campina Grande, Aeroporto de Juazeiro do Norte

Qualquer conflito ou litigio originado do presente contrato, bem como sua interpretação ou execução, será resolvido por arbitragem, de acordo com a Lei nº 9.307, de 23 de setembro de 1996, nos termos do respectivo regulamento de arbitragem que, expressamente, as partes declaram concordar.

BENÍCIO DE CARVALHO JUNIOR Professional

Contratante

Acessibilidade: Não: Declaro que as regras de acessibilidade, previstas nas normas técnicas da ABNT e no Decreto nº 5.296, de 2 de dezembro de 2004, não se aplicam às utividades profissionais acima relacionadas.

7. Entidade de Classe NENHUMA 8. AS EDSON BENICIO DE CARVALHO

Assinado digitalmente por EDSON-BENI CIO DE CARVALHO JUNIOR

https://art.creadf.org.br/art1025/funcces/form_impressao_tos.php?fvLIMERO_DA_ART=0720220070226

BENICIO DE CARVALHO JUNIOR
DN. CN-EOSON BENICIO DE
CARVALHOS MARIE
E-EDGONBENICIO (GOMAIL COM
Raz do Eli qui o autro d'Oto documento
Localização Databaccalização de
pasinatura acui
Data 2022 (8 31 12 28 40-0300)

A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vinculo contrataal.

9. Informações

EDSON BENICIO DE CARVALHO TONIOR - CPT.

1/2

25/08/22, 15:36

https://art.creadf.org.br/art1025/funcoes/form_impressao_tos.php?NUMERO_DA_ART=0720220070226

847.XXX.XXX-49

AEROPORTOS DO NORDESTE DO BRASIL S.A CNPJ: 33.919.741/0001-20.

www.creadf.org.br informseac@creadf.org.br Tel: (61) 3961-2800

CREA-DF

Valor da ART: R\$ 233.94 Registrada em: 25/08/2022 Valor Pago: R\$ 233,94 Nosso Número/Baixa: 01/22059505

https://art.creadf.org.bn/art1025/funcoes/form_impressao_tos.php?NUMERO_DA_ART=0720220070226

2/2

Disponível em

 $https://art.creadf.org.br/art1025/funcoes/form_autenticidade_art.php? NUMERO_DA_ART=0720220070226$